James Odell

jodell@compuserve.com

MAGINE SITTING IN THE PARK On a hice summer day as
a flock of birds sweeps the sky. One moment they are
a circling, another they dart to the left or drop to the
ground. Each move is so beautiful that it appears choreo-
graphed. Furthermore, the movements of the flock seem
smoother than those of any one bird in the flock. Yet, the
flock has no high-level controller or even a lead bird. The
phenomenon is a result of what is often called “self-organi-
zation.”! Each bird follows a simple set of rules that it uses
to react to birds nearby. In Craig Reynolds’ simulation,?
each bird behaved according to three simple rules:
1. Maintain a minimum distance from other objects, in-
cluding other birds.
2. Try to match velocities with other birds.
3 Try to move toward the perceived center of the mass of
birds in its neighborhood.
Orderly flocks emerge from simple rules such as these. No
one bird has a sense of an overall flock. The “bird in front” is
merely a position of a given bird. It just happens to be there—
and it will be replaced by others in a matter of minutes.
“The flock is organized without a organizer, coordinated
without a coordinator.”!

Flocks of birds are not the only things that work like this.
Bee hives, ant colonies, freeway traffic, national and global
economies, societies, and immune systems are all examples
of patterns that are determined by local component inter-
action instead of centralized authority.

Agents

Another name for local component is agent. A basic dictio-
nary definition of agent is “one who acts.” Under such a
broad definition, agents can have a host of properties. One
way to think about these properties is as follows3 :

» Autonomous. Exercises control over its own behavior
and state.

e Communicative. Socially able, communicates with
other agents, such as humans, machines, and software
agents.

* Mobile. Able to transport itself from one environment
or platform to another.

* Reactive. Sensing and acting; responds in a timely

James Odell is a consultant, educator, and author. He works
with IntelliCorp, James Martin & Co., and Quoin, Inc.

METHODOLOGY

Agents and Beyond:

A Flock Is Not a Bird

e Temporally continuous. A continuously running

process.

e Flexible. Actions are not scripted.

* Character. Believable “personality” and emotional state.

e Able to learn and evolve. Learning; changes its behav-

ior based on its previous experience.
Most people who work with agents find this definition
overly broad. They argue that an agent is not very useful
without at least the first four of the above properties, so a
typical definition for agent is “an autonomous entity that
can interact with its environment.”

Lately, we've been hearing a lot about agents in software.*?
While there are many definitions,® generally software agents
are autonomous software entities that can interact with
their environment. In other words, they are agents that are
implemented using software. They are autonomous and can
react with other entities, including humans, machines, and
other software agents in various environments and plat-
forms. The preceding example of birds was simulated using
software agents. A similar set of agents was employed to ani-
mate the penguin sequence in a recent Batman movie.

Agents and Object Orientation

An agent-oriented approach is employed when a particular
situation requires a decentralized and self-organized ap-
proach to processing instead of a centrally organized one.
While a centrally organized program could have been writ-
ten to handle the bird simulation, the system would have
been far too cumbersome. It would have required a single
set of top-level rules telling each bird precisely what to do
in every conceivable situation. Not only would such an ap-
plication be touchy and fragile, it would likely end up look-
ing jerky and unnatural—more like an animated cartoon
than animated life.?

Yet, most developers tend to build centrally organized
applications. They are also biased toward object-oriented
notions, such as class, association, and message. While these
constructs are useful for a certain category of applications,
they do not directly address the requirements of agents. As
we have seen, agents have such characteristics as autonomy;,
mobility, and adaptability. Furthermore, business users like
to express other concepts, such as rules, constraints, goals
and objectives, and roles and responsibilities. In short, the
agent-oriented approach distinguishes between autono-

www.DistributedComputing.com

DIFRAYIE



JMETHODOLOGY

mous, interactive, mobile objects (agents) and the passive
objects of conventional object orientation. This does not
mean that object orientation is dead; instead, it can be used
to enable, rather than drive, agent-oriented technology.*

Adaptive Agents
A more advanced category of agents includes those that can
learn and evolve. Such agents can change their behavior
based on their experience. For example in Art Samuel’s
checkers game,” each agent could evaluate its move as well
as learn to modify its evaluations over time based on play-
ing experience. There are more established “intelligent”
techniques based on such approaches as inference engines,
neural nets, and genetic algorithms. So-called intelligent
agents employ these techniques so that they can react,
proact, or do both to their environment. Recently, adaptive
agents have gone beyond the traditional approaches of in-
telligent agents. For example, the rule engines can now sup-
port contradictory rules as well as have the ability to learn.
Using a biological metaphor is also a common technique.
Here, agents can mate, reproduce (either by giving birth or
by cell division), exchange resources, absorb, kill, and die.
Such a metaphor is appropriate for many life or life-like
forms, such as cells, persons, work units, companies, soci-
eties, countries, or alliances among countries.8 Further-
more, such life-forms can evolve beyond predefined, close-
ended possibilities. In Tom Ray’s Tierra project,® the agents
are capable of replication and open-ended evolution. In
other words, new species of agents can emerge—species
that were not planned or anticipated—solely through the
workings of the evolutionary process itself.

Complex Adaptive Systems

We have thus far discussed agents only as individuals. Yet,
what about the flocking phenomenon described at the be-
ginning of this column? Individually, each bird followed
three simple rules, yet a secondary effect, that is, the flock,
was produced. While flocking was neither dictated nor ex-
pected from the rules, an entity with its own structure and
behavior emerged. Tremendously interesting and beguil-
ingly complex things can emerge from collections of ex-
tremely simple components.2 This concept of emergence is
attributed to many real-life phenomena, such as molecules,
amino acids, cells, immune systems, ant colonies, bee hives,
ecosystems, societies, market economies, stock markets, or-
ganizations, supply chains, traffic jams, and the Internet.

In short, we are talking about a whole that is more than
just the sum of its agents. Such systems are called complex
adaptive systems (CAS)—sometimes called complex sys-
tems, for short. Complex systems theory is the study of sys-
tems where a great many independent agents interact with
each other. It is a new way of thinking about the collective
behavior of many basic but interacting units. These units
can be simple, yet their interaction yields a complex result.
This means that a flock is more than just a collection of

birds, and a traffic jam is more than just a collection of cars.
Complex systems theory, then, includes the study of transi-
tions from one level of organization to a higher one, where
the higher one can be a component in an even higher one,
and so on. In the meantime, agents can learn and evolve,
resulting in the birth, change, or extinction of individual
agents as well as the complex systems in which they partici-
pated. 10

Implications for Software Development

The behavioral description of software agents needs to be
expanded to include agent learning and evolution, as well
as complex systems. For this to happen, software develop-
ers must be aware of the following issues11:

* Concurrency. In any complex domain, many things
happen at once. A general framework must deal at its
outset with concurrency and the autonomy of concur-
rent processes.

Partial information. No part of the system can have
information about any other part of the system unless
specific interactions have occurred to transfer that in-
formation.

Visibility and connection. For reasons of scalability, a
given process can directly affect or query only a finite
set of other processes.

Creation and destruction. A process not only has lim-
ited knowledge of the other processes with which it can
interact, but the collection of these processes is not fixed.
History. The action of an encapsulated process can de-
pend in general on any part of its history, including
every interaction in which a process has participated
since its creation.

Reflection. The external behavior of an object can be a
function not only of its history and an initial set of con-
stitutive rules, but of internal processing that extends
or evolves any initially predictable behavior.
Emergence. The interaction of many individual agents
can give rise to secondary effects where groups of
agents behave as a single entity, or multiagent. While
such occurrences are often unplanned and unex-
pected, they should be anticipated.

Next in this Column
The purpose of this month’s column is to introduce the no-
tion of agents. The phenomenon is not science fiction:
many commercial IS tools that support agents, adaptive
agents, and complex systems already exist (or are under de-
velopment).

In future columns, I will explore in greater detail various
areas of the agent technology, examining how it can be ap-
plied to business as well as software. &

References

1. Resnick, M., Termites, Turtles, and Traffic Jams: Explorations
in Massively Parallel Microworlds, Cambridge: MIT Press, 1997.

6 R

April 1998



METHODOLOGY

2. Waldrop, M. M., Complexity: The Emerging Science at the
Edge of Order and Chaos, New York: Simon and Schuster, 1992.

3. Franklin, S., and Graesser, A, Is it an Agent, or just a Pro-
gram?: A Taxonomy for Autonomous Agent, Proc. of Third
International Workshop on Agent Theories, Architectures,
and Languages, Springer-Verlag, 1997, (www.msci.mem-
phis.edu/~franklin/AgentProg.html)

4. Farhoodi, E, and Fingar, P, Intelligent Agents: Going Where
No Objects Have Gone Before, Distributed Object Comput-
ing, 1:8, October 1997, homel.gte.net/pfingar

5. Farhoodi, F, and Fingar, P, The Next Big Thing: Developing
Intelligent Enterprise Systems, Distributed Computing, 1:1,
November 1997.

6. Graham, I., The Architecture of Agents, Object Magazine,
7:6, August 1997.

7. Samuel, A. L., Some Studies in Machine Learning Using the
Game of Checkers, Computers and Thought, E. A. Feigen-
baum and J. Feldman eds., New York: McGraw-Hill, 1963.

8. Axelrod, R., The Complexity of Cooperation: Agent-Based
Models of Competition and Collaboration, Princeton, NJ:
Princeton University Press, 1997.

9. Ray, T., An Approach to the Synthetic Biology, Artificial Life:
An Overview, C. Langton, Ed., Cambridge: MIT Press, 1997.

10.www.santafe.edu.

11.Burkhart, R., Effective Description of Enterprise Processes,
position paper for the Workshop on Specification of Behav-
ioral Semantics in Object-Oriented Information Modeling,
OOPSLA ’93, August 9, 1993. www.santafe.edu/~rmb/oop-
sla93.html

www.DistributedComputing.com DI&W



