
Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
Enterprise Application Integration Encounters Complex Adaptive Systems: A
Business Object Perspective

Jeff Sutherland Willem-Jan van den Heuvel
PatientKeeper, Inc. Infolab,

20 Guest Street, Suite 500, Tilburg University
Brighton, MA 02135, PO Box 90153

United States Tilburg, The Netherlands
email: jeff.sutherland@computer.org email: wjheuvel@kub.nl
Abstract

To remain competitive organizations are lining up into
virtual alliances, with integrated value chains, introduc-
ing competition between, rather than within supply chains.
A crucial requirements of virtual alliances, and their sup-
porting, integrated enterprise application is their ablility to
move fast and quickly adapt to business-induced change.

This paper combines theories from the area of Complex
Adaptive Systems (CASs), that has been successfully ap-
plied to explain the adaptive behavior of biological systems,
with research from the research arena of enterprise appli-
cation integration that is based on a variety of distributed
business object technologies.

In particular, this paper investigates whether successful
EAI implementations conform to the CAS properties by re-
viewing three case studies that apply business object tech-
nology. These concepts can organize our discussion of busi-
ness object systems and inform our understanding of the
success factors for designing integrated enterprise applica-
tions, since the most effective integration is often the result
of ”capturing” software from foreign systems, a common
phenomenon in CAS systems.

1 Introduction

The ubiquity of the internet gives enterprises the ability
to line up into virtual alliances with tightly integrated value
chains, resulting in competition between rather than within
vertical industries. It is mandatory that virtual alliances
do not only have smootly running integrated business pro-
cesses, but also have the capability to move fast and quickly
adapt to change. Virtual alliances are subject to a wide vari-
ety of changes, some of them initiated by themselves, others
1

0-7695-1435-9/02 $1
imposed by external organizations, e.g., changing tax regu-
lations. Business changes must be mapped to the business
application level without disrupting the integrated business
processes.

To meet the architectural requirements of virtual al-
liances, and get better reuse from software, distributed busi-
ness object technology is the preferred solution [4]. Busi-
ness objects can be the key building block in the integrated
company as they can realize domain business processes and
default business logic that can be used to start building and
integrating business applications in these domains. Further-
more, domain specific models can be designed as business
frameworks so they can be easily extended and modified,
e.g., SAP and IBM’s San Francisco business objects. These
can be deployed for integrated cross-enterprise applications
that can be easily built upon distributed broker architectures
such as CORBA.

One important characteristic of business object tech-
nology, that contributes to the critical challenge described
above, is the explicit separation of interface and implemen-
tation of a class. Business objects technology takes this
concept a step further by supporting interface evolution in
a way that allows the interfaces of classes to evolve with-
out necessarily affecting the clients of the modified class.
This is enabled by minimizing the coupling between busi-
ness components. Client and server classes are not explic-
itly bound to each other, rather messages are trapped at run-
time by a semantic data object that enforces the binding at
the level of parameter passing semantics [9]. The key as-
pect of this mechanism is that messages are self-defining as
the message name is maintained in the request, and the pa-
rameter names are defined in the semantic data object that
is also passed in the request.

Currently, distributed object technology, e.g., DCOM,
CORBA and Enterprise Javabeans, provide interface de-
scription languages and services that allow distributed ob-
jects to be defined, located, combined and invoked. The
7.00 (c) 2002 IEEE 1

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
primary benefit of using them is to encapsulate the hetero-
geneity of legacy systems and applications within standard,
interoperable wrappers. To allow such components to ef-
fectively interconnect high-level business objects, business
process and workflow applications with low-level legacy
wrapper objects, in a way that respects business seman-
tics, new technologies need to be developed. Another major
challenge is to permit continuous enhancement and evolu-
tion of current massive investments in information sources
and systems. In summary, this infrastructure must support
the migration of large numbers of independent multi-vendor
databases, middleware technologies, and standard packages
(e.g., SAP) into dynamic and highly integrated, evolvable,
enterprise information systems running over distributed in-
formation networks. All these are challenges for succesfull
integration of enterprise information systems.

Such systems have a highly unpredictable, non-linear be-
havior where even minor occurences might have major im-
plications. The same phenomen has been observed in the
domain of phyiscal and biological systems, be it either an
individual animal or a swarm of bees, and has been exten-
sively researched in the area of Complex Adaptive Systems
(CAS) [13], [7]. In this article, we investigate the CAS char-
acteristics of succesful EAI projects from a business object
technology perspective, so we can derive some design pa-
rameters and patterns for successfully integrating enterprise
applications.

The remainder of this paper is organized as follows. In
the following section, we outline business object compo-
nent architectures as a stable foundation of enterprise ap-
plications, that do not only capture business processes and
policies, but also accomodate business-induced changes. In
section 3, we clarify the relevance of Complex Adaptive
Systems (CASs) to business object systems. These con-
cepts can organize our discussion of business object sys-
tems and inform our understanding of enterprise application
integration (EAI), since the most effective integration is of-
ten the result of ”capturing” software from foreign systems,
a common phenomenon in CAS systems. The following
three sections serve to illustrate how the CAS requirements
within three succesful EAI case studies have been met, re-
sulting in adaptable enterprise integration solutions. Subse-
quently, section 7 proposes to agentify business objects, that
meet the CAS properties, for integrating enterprise applica-
tions. This paper is concluded with a summary and some
issues for future research.

2 Business Object Component Architectures

Many business object architectures are proposed in lit-
erature to support the design and implementation of busi-
0-7695-1435-9/02 $1
ness object based applications [11]. An architecture de-
fines the stable structure of a system by defining their main
parts, their relationships and constraints. A Business Ob-
ject Component Architecture (BOCA) is an effective solu-
tion for dynamic automation of a rapidly evolving business
environment [4], as it provides a stable foundation for enter-
prise applications and accomodates changes to current busi-
ness practices and policies. Dynamic change requires reuse
of chunks of business functionality (as noted by Arthur in
his description of the CAS ”software capture” effect [2]).
A BOCA must support reusable, loosely coupled, cohe-
sive plug compatible business component so applications
can be quickly reconfigured to meet changed business re-
quirements. The two primary strategies now being used for
implementing client/server systems to support reengineer-
ing of business processes are visual 4th Generation Lan-
guages in combination classical distributed object technol-
ogy. While both of these approaches are recent improve-
ments in system implementation, neither of them effectively
implement plug and play business object assemblies.

A group of objects is the ideal unit of reuse. Groups of
objects behave as a higher level business process and need
a clearly specified business language interface. These so
called business process objects are a kind of active (or con-
trol) objects that bring together business objects to define
a business process. They are embodied by a set of interre-
lated activities that collectively accomplish a specific busi-
ness objective, possibly, according to a a set of pre-specified
policies. Business processes provide the basic ingredients
that can be specialized and extended to capture domain or
application specific processes – within a particular vertical
domain, e.g., financial, manufacturing – which are realized
by a workflow. Workflow management systems support the
definition, execution and controlling of the business pro-
cesses. Business processes interact in a predictable, repeat-
able manner to produce a recognized business activity of
generic nature in a specific business domain, e.g., procure-
ment management, general ledger, etc. Business processes
are initiated by events that trigger activities in the organi-
zation [8]. These events can be internal (e.g., rules) or ex-
ternal (e.g., customer requests). The business processes are
initiated on the basis of an incoming event (e.g., a customer
request), and result in an outgoing event (e.g., the notifica-
tion that a product is ordered). So, business processes are
concurrently executing, event-driven business objects that
are connected to business entities to reflect changes in the
business domain.

Proponents of CAS should note carefully Abelson and
Sussman’s comments in their classic MIT computer science
text [1]. The power of computing lies in recursively writing
higher levels of language that are supported by lower level
languages (thus inducing emergent behaviors). Layered ar-
7.00 (c) 2002 IEEE 2

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
Figure 1. Business Object Assemblies

chitectures, such as BOCA (see previous section), promote
discrete recursion as each layer builds on top of lower-level
functionality and corresponds to a logical area of concerns.
Discrete recursion is considered to be a powerfull concept
to reduce complexity and adequately deal with object gran-
ularity, as it depends on an architecture with a predefined
number of layers, designed for a specific goal [11].

Moreover, business objects need to be encapsulated with
a protocol that allows efficient communication with other
objects on the network. Work on the concept of Ensembles
has shown that there is a minimal design specification for a
plug compatible component [18]. A business object needs
semantics that extend beyond the syntax of COM compo-
nents and JavaBeans containers.

More importantly from a business perspective, business
objects must guarantee proper behavior in response to a
set of scenarios that ultimately trace back to use cases.
These scenarios must be evoked by messages in a standard-
ized context, including timing and sequencing, to guarantee
proper operation of the component in any system that uses
the component according to its design specification. While
these minimal requirements were worked out years ago and
pursued by the OMG Business Object Domain Task Force
since 1995, they have yet to evolve into any standard ap-
proach for building plug compatible business objects.

It is critical that standard business objects be available to
enable a business system to function as a complex adaptive
system. Adaptive means that systems must easily evolve
and this requires continuous changing, updating, adding,
subtracting, and rearranging components. When changing
one component causes ripple effects throughout a system,
the cost of rewriting major portions of the system slows evo-
lution to a snails pace. This is the state of the 80% of busi-
ness systems that are viewed as unsuccessful implementa-
tions in industry today [5].

Several architectures to structure the tiers of business ob-
jects have been proposed in literature: the Business Ob-
ject Component Architecture (BOCA) [23], and, the lay-
ered architecture as proposed by Prins [28], and lastly,
the User-Workspace-Enterprise-Resource (UWER) archi-
tecture [11]. However, these architectures do not conform
to essential CAS characteristics, such as nonlinearity and
mechanisms that contribute to adaptability. These charac-
0-7695-1435-9/02 $1
teristics are discussed in the next section.

3 Complex Adaptive Systems (CASs) from a
Business Object Perspective

Holland defines CAS as systems composed of interacting
agents which respond to stimuli and stimulus-response be-
havior that can be defined in terms of rules. Agents adapt by
changing their rules as experience accumulates and can be
aggregated into meta-agents whose behavior may be emer-
gent, i.e. not determinable by analysis of lower level agents
[13].

Business entities are good examples of complex adaptive
systems. The modification time of a business firm is on the
order of months or years, about the same amount of time re-
quired to enhance its computing systems. Automating busi-
ness processes renders a subset of the business in software,
thus enterprise software systems are examples of CAS. A
business system has a severely constrained rule set, com-
pared to a typical CAS system like New York City or the
U.S. economy, making them ideal for initial implementation
of CAS concepts. Business benefits can be significant since
enhanced flexibility, adaptability, and reusability of these
systems can strengthen the ability of an enterprise to evolve
and survive in the marketplace. Typical characteristics of
CAS systems are lacking in most business software systems
so there are major opportunities for improvement. New dis-
coveries in object technology parallel Holland’s analysis of
CAS. Event driven, distributed object component systems
are ”interactive systems.”

Wegner has shown that interactive systems are not Tur-
ing machines [33]. All interactions in these systems can-
not be anticipated because behavior emerges from interac-
tion of system components with the external environment.
Such systems can never be fully tested, nor can they be fully
specified. These contemporary, event driven, business ob-
ject component systems exhibit emergent behavior, a fun-
damental feature of CAS. And they are clearly complex,
to the extent that the running system may be the shortest
description of its behavior. This is certainly true of large
enterprise systems running in multiple sites with different
custom code and hardware platforms at every site. Supply
chain integration of these disparate systems via an intranet,
extranet, and/or the internet is often a global EAI develop-
ment task.

Business object components can be defined recursively,
and represented at various levels of granularity. Objects are
aggregated into components. Components are aggregated
into meta-components and a hierarchical structure is built to
support integration of enterprise software systems. Holland
uses an equivalent diagram to describe a complex adaptive
7.00 (c) 2002 IEEE 3

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
system made of of adaptive agents (see Figure 1.1, [13], p.
6). Work on Business Object Component systems is evolv-
ing along the lines of CAS, because successful systems are,
in fact, instances of complex adaptive systems. Of the 80%
of all software projects deemed failures, reasons for failure
are often related to the inability of systems to rapidly adapt
to changing business needs [5]. In fact, the failure to de-
sign software systems to support CAS behavior dooms the
majority of them to failure and the minority survivors to
premature obsolescence because of their inability to adapt
through integration with newer system developments.

Enterprise application integration from a Business Ob-
ject Component/CAS perspective requires an understanding
of Holland’s synthesis of CAS concepts:

1. Aggregation (property) - there are two important
modes of aggregation in CAS systems. Aggregation
is a basic mechanism in object modeling and is the ba-
sis for identity, a fundamental object concept. Form-
ing components out of objects and enterprise systems
from components is higher level aggregation. More
important are emergent properties such as intelligence
that evolve out of dumb subsystems. This is the basic
concept in Minsky’s ”Science of Mind” [20] or Hof-
stader’s analysis of an ant colony [12]. Meta-agents
(an enterprise) are formed of aggregates of agents (en-
terprise systems) and exhibit emergent behaviors (rev-
enue, profitability, and cash flow, the indices of value
creation).

2. Tagging (mechanism) - this mechanism facilitates the
forming of aggregates, from HTML pages to the mech-
anisms in CORBA or DCOM that allow inter object
communication. They facilitate selective mating, i.e.
firewalls block certain tagged elements to protect the
enterprise. Thus they preserve boundaries between ag-
gregates. They allow us to componentize object mod-
els and enable filtering, specialization, and coopera-
tion. They are the mechanism behind the development
of hierarchical aggregates that exhibit emergent behav-
iors like an operating system. The basic mechanisms
of evoking operations through messages in object tech-
nology are based on tagging strategies.

3. Nonlinearity (property) - nonlinear systems exhibit
catastrophic and chaotic behaviors. Traffic flow on
the Internet is nonlinear, leading to predictions of the
collapse of the network. Brownouts, system loadings,
scalability effects are often nonlinear. The arrival, pro-
liferation, and destruction of viruses on the Internet is a
nonlinear phenomenon that can be modeled like preda-
tor/prey interactions in biological systems. Even more
basic phenomenon like revenue prediction in an enter-
prise financial system has nonlinear behaviors that are
0-7695-1435-9/02 $17
often not recognized. The rate of construction of soft-
ware itself is a nonlinear phenomenon.

4. Flows (property) - workflows are examples of flows
in action. Message routing is a flow. Tags condition
flows which often exhibit nonlinear characteristics and
emergent behaviors. Flows typically have a multiplier
effect. Money injected into the economy has an effect
out of proportion to the amount, similar to email or
other message flows on a network. The recycling effect
of flows enables the rain forest, as well as an enterprise
computer ecosystem. Individual pieces evolve, die, are
replaced or reused, constantly changing the character-
istics of the enterprise. Living software is software that
is constantly changing due to flows, as rivers change
their course. Dead software is eventually detritus that
is expelled from the enterprise organism.

5. Diversity (property) - persistence of an individual
agent depends on the ecosystem of agents that sur-
round it, whether the agent is an ant in the rain for-
est or a business object in an accounting system. The
evolution of these agents as software changes causes
convergence of system architectures. This is the basis
of emergent patterns that reappear again and again in
widely disparate environments. It is difficult to evolve
a single agent to make it more useful in an isolated
context. Usefulness in business object systems arises
from interactions between diverse agents as in human
societies.

6. Internal models (mechanism) - the utility of complex
systems is enhanced if the system can learn from expe-
rience and adapt its behavior. The ability of the system
to develop and act on internal models that simplify the
external world is basic to this mechanism. It allows the
system to infer the results of actions before they are
taken, and to choose actions that have productive re-
sults. The prospects for longevity of software systems
depend on this capability, just as in living systems.

7. Building blocks (mechanism) - reuse is dependent on
building blocks used over and over again. It is the ba-
sis of Moore’s law in hardware production. It could be
the basis of dramatic improvements in software pro-
ductivity. Building blocks are the basis for generation
of internal models and are essential to the construction
of adaptive enterprise systems.

Holland, in his Ulm lectures at the Santa Fe Institute cre-
ates a synthesis of these seven basic CAS concepts, four
properties (aggregation, nonlinearity, flows, diversity) and
three mechanisms (tags, internal models, buildings blocks)
[13].
.00 (c) 2002 IEEE 4

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
BackOff ice

FrontOff ice

Adapter

Legacy
Applicat ion

Adapter

Legacy
Applicat ion

Adapter

Legacy
Applicat ion

...

Adapter Adapter

GUI GUI

Process

Figure 2. Integrating two disparate systems
[32]

4 Case 1: The Merger of two Insurance Com-
panies

Van den Enden et al. [32] provided a creative example
of ”capturing” two enterprise systems. The merger of two
insurance companies required disparate system integration.
The front office system from the first company was built
on Sun hardware using the Forte 4GL environment. The
second company had a backend system that ran on Unisys
mainframe hardware and was coded in LINC, a Unisys code
generation language.

Van den Enden et al. decided to use a workflow engine,
intelligent adapters, and XML messaging [3] as the core
of their integration strategy. New technology was superim-
posed on the old in order to enable (1) interaction between
web HTML clients and mobile WML clients, (2) utiliza-
tion of standard transform mechanisms with XSL/XSLT,
(3) easy integration with future systems in electronic mar-
ketplaces through XML, and (4) validation and language
mapping capabilities available with XML DTD and XML
Schema tools. Van den Enden’s architecture ”captured” the
disparate systems with a workflow engine (Sun’s Forte Con-
ductor). All business logic is encapsulated in a workflow,
and the architecture uses intelligent adapters to provide for
the ’glue’ that links the external applications to the work-
flow. Adapters transform XML message formats into other
data formats or into objects and are able to take different
actions based on the content of the message.

Sun’s Forte Conductor graphical tools are used to set up a
process definition which describes how to initiate a process,
0-7695-1435-9/02 $1
<xml>
 <data/>
</xml>

<xml>
 <data/>
</xml>

<xml>
 <data/>
</xml>

Robot ic Cl ient

R B C R B C R B C R B C

Bus iness Process

Integrat ion Flow

Adapter

MQSer ies Integrator

MQSer ies

BackOf f ice System

Figure 3. Overview of the backoffice adapter
[32]

what step the process is in, and who is responsible for exe-
cuting the step (the front end user or the backend system).
All details of the frontend or backend systems are hidden
from the workflow layer. Thus Forte Conductor ”conducts”
the execution of a process instance by human and machine
interactions.

The backend architecture of this system is depicted in
Figure-2. When a node in the process instance requires the
cooperation of the backend system, it sends an XML mes-
sage to a ”robotic” client. This agent orchestrates the flow
of commands required to integrate the backend system into
the workflow. Similarly, the Conductor workflow engine
sends XML messages to a frontoffice adapter which insu-
lates the frontoffice system from the workflow layer.

In this architecture, two legacy systems are aggregated
into a single system by adapters controlled by the work-
flow engine. Nonlinear behavior induced by actions of
goal seeking agents is avoided in this system by essen-
tially hardcoding workflows and tuning them prior to pro-
duction. Flows are managed by the workflow engine and
routed using tags supported by the infrastructure of XML.
and diversity is managed by shielding the workflow engine
with ”robotic” clients. Internal models are essentially hard-
coded. And building blocks used in aggregation are en-
abled by workflows interacting with adaptors that manipu-
7.00 (c) 2002 IEEE 5

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
late legacy systems. We would not expect emergent behav-
ior in this system because of hardcoding workflows and im-
plicitly defined and fixed internal models. However, since
the architecture abstracts business processes from the more
rigid legacy system, it would support future extension of
the system to support agents with adaptive internal models
that could dynamically define workflows within the limits
of defined adapters. In particular, this system implements
a fundamental concept that will be characteristic of future
adaptive systems - automated workflow drives business pro-
cesses, in place of human interaction. This is an excellent
example of ”capturing” the software of two legacy systems
and repurposing them for future flexibility. It preserves
legacy investment while freeing legacy systems from many
limitations.

5 Case 2: Mobile Device Platform support
for the Integration of Hospital (Legacy) In-
formation Systems

The Internet explosion has inspired an outpouring of pre-
dictions that the health sector’s long-awaited breakthrough
in information management is finally at hand. But will net-
work computing really help create order amid the befud-
dling maze of insurance claims, clinical records, and qual-
ity data in which the key to a more efficient system now lies
hidden? Or will the ultimately localized, idiosyncratic, and
fragmented enterprise of care continue to prove resistant to
rationalization?

A more sophisticated problem of enterprise integration
is introducing ”point of sale” technologies into healthcare.
Most people are unaware that the United States is tied with
Croatia for the lowest level of automation at the point of
care of any country on the planet. Over 95% of clinicians
have no automation at the point of care in the United States
versus more than 90% with some level of automation at the
point of care in the United Kingdom and Canada [6].

The net result is a tremendous loss of money due to un-
billed or incorrectly code charges (an average of 8-10% in
large Integrated Healthcare Delivery Networks). Loss of
funds in failed reimbursement for laboratory tests due to
miscoding or failure to demonstrate medical necessity can
result in the lost of tens of millions of dollars annually for
a single institution. Even worse is the fact that medication
error is (conservatively) the fourth leading cause of death
in the United States and that minimal levels of automation
would reduce these deaths by 50-80%. This has been de-
clared a national emergency by the National Academy In-
situte of Medicine [16]. In fact, when all sources of iatro-
genic deaths are included, such as nosocomial infections,
preventable medical error is the third leading cause of death
0-7695-1435-9/02 $17
Handheld
Data Store

Mobile
Communications

Mobile
Patient Index

Application Framework

Single
Sign on

Patient Context
Management

Multiple
Device Types

Application
Interoperability

N
Applications Mobile SDK

Mobile Legacy
Integration

Mobile Clinical
Repository

Mobile
Patient Index

Adapters/Open API

Business Logic

Central
Administration Personalization

Transport:
Wireless or

Ethernet
Transactions Messaging

& Alerting
Web

Reports

HIPAA
Audit
Trail

��������

��	
��

�
�
������	
���

���	���

Services Objects

���� ��� ����

Figure 4. The PatientKeeper Architecture

by a wide margin, exceeded only by heart disease and can-
cer [30].

Solving this problem requires a complex enterprise ap-
plication integration effort. First, a large Integrated Delivery
Network (IDN) will often have hundreds of disparate soft-
ware systems, several of which will need to be integrated to
support even a single limited application like generating a
bill for treatment. Second, physicians are inherently mobile
and have no immediate access to any of the information in
these hundreds of systems. Adoption of personal comput-
ers and online medical records is vanishingly small at the
point of care. However, almost 30% of physicians today
carry a mobile device such as a Palm Pilot and the number
is growing quickly due to physician interest. Third, the cost
of mobile devices and wireless communication is dropping
rapidly to the point where total cost of ownership (TCO) is
1/5 the cost of supporting a laptop. One could argue that
reducing the fourth leading cause of death by 50-80% is the
most humane act that computer professionals could possi-
bly provide in terms of reduction of human pain and suffer-
ing [21].

Tackling this problem requires four layers of distributed
systems technologies. Cache consistency across all lay-
ers of these systems must be maintained precisely to avoid
medical error [10]; [17]. An integration platform architec-
ture for support of mobile/wireless applications at the point
of care is shown in Figure-4

The top layer of this architecture is the mobile device.
While the platform needs to support a wide variety of device
types, an individual clinical only wants one device in their
coat pocket. The handheld device provides a mobile patient
index integrated with backend legacy systems and an appli-
cation API which allows independently authored applica-
tions to plug into the framework. All applications are inter-
.00 (c) 2002 IEEE 6

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
operable in the sense that the clinician selects a patient, then
selects an application which automatically understands the
patient context. Key requirements are a single signon and
security infrastructure, application interoperability, and ”al-
ways ready” operations. When the device is disconnected
from the network, applications run normally off the local
device datastore. When the device is reconnected by any
wireless or wired mode, it automatically synchronizes with
backend databases and runs as a connected application.

The second layer of the architecture is a synchroniza-
tion server which must support a wide variety of device
types. Information flowing to the mobile device must be
personalized to the specific device, clinician, and applica-
tion. For example, if Dr. Palm is a cardiologist, he has a
set of applications oriented towards cardiology. He wants
to see his own patients on his Palm Pilot and their lab re-
sults. If he is in his office, he may want to be alerted on his
Palm Pilot. When he is on the golf course he may want to
be paged. If he is on call he will want another physicians
patients to transparently appear on his mobile device. The
synchronization server must stage data, manage personal-
ization, and handle routing, alerting, and messaging. It must
keep the data cache on the mobile device synchronized with
lower level databases in the architecture.

In order to manage a complex set of clinical and finan-
cial data requiring extensive authorization, security, and au-
diting features, a robust, fault-tolerant, clinical repository is
required. This is the third layer of the architecture. In addi-
tion to managing patient data, the repository must manage
multiple record numbers for the same patient which exist in-
dependently on dozens of legacy systems. It must also man-
age a complex network of enterprise application integration
varying between dozens of different applications. For ex-
ample, if Dr. Palm is in the hospital on rounds he wants
data to flow to and from the hospital financial and clinical
system. When he goes back to his ambulatory clinic, he
wants to see data flowing to and from his clinic financial
and clinical systems. He wants all this to be transparent
to whichever hospital or clinic he is in at the moment. He
wants data seemlessly available anywhere or he will not use
the device.

The clinical repository in this example is integrated us-
ing a component object strategy. The repository provides
object-oriented component interfaces to the synchroniza-
tion server. The messaging protocol between the synchro-
nization server and the repository is XML using SOAP [22]
as an RPC mechanism. The critical need for a component
architecture to provide seamless integration is discussed in
section 2.

The fourth layer of the architecture are the legacy sys-
tems themselves. They can be integrated via adapters as in
0-7695-1435-9/02 $1
the previous insurance example, or interfaced using stan-
dard message formats or proprietary legacy interfaces.

The architecture aggregates multiple heterogeneous sys-
tems through component objects, adapters, or messaging in-
terfaces. It also aggregates data from backend legacy sys-
tems and manages the consistency of data across layers of
the architecture. Flows are handled by workflow engines
at both the synchronization server and clinical repository
layers of the architecture. Tagging is supported by XML
infrastructure. Diversity is shielded from the mobile device
by the clinical repository. Building blocks are aggregated
with a wide variety of integration patterns and mechanisms
for interoperability. The system is complex enough to in-
duce nonlinear behavior but this must be managed by man-
ual tuning or coding. Internal models are implicitly defined
by hardwiring components for specific applications. There
may be limited goal seeking behavior induced by hardcoded
business rules in various system layers.

A unique feature of this architecture is that mobile de-
vices can be used as a remote control to drive the enter-
prise. Workflow drives business processes. However, hu-
mans at the remote control serve as intelligent agents with
goal-seeking behaviors. This architecture is an excellent at-
tempt to handle complexity but is not adaptive. New con-
figurations must be manually created. To raise the level of
adaptability requires moving a workflow engine to the cen-
ter of the architecture while simultaneously distributing it
across all computing platforms in the enterprise. This is
the focus of the third example, but first some comments on
component architectures essential to the workflow strategy.

6 Case 3: ”Big Workflow” for Enterprise Ap-
plication across the Healthcare Integrated
Delivery Network (IDN)

”Big Workflow” is a term that has been used to describe
workflow that crosses multiple applications and multiple
vendors to support patient flow across a healthcare Inte-
grated Delivery Network (IDN). Similar systems have been
implemented or are under construction in manufacturing
and other vertical application domains. As an example,
HealthSystems Minnesota has carefully defined their busi-
ness processes for managing patient flow across multiple in-
stitutions within their IDN. They would like the capability
to superimpose HealthSystems business processes across all
(more than 300) vendor applications, and be able to modify
them globally without modifying vendor systems.

Sutherland and Alpert presented an implementation of
”Big Workflow”, in [31]. This work was initiated based on
research by Santanu as presented in: [26]. He describes a
7.00 (c) 2002 IEEE 7

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
Process
Manager

Policy
Manager

Worklist
Proxy

Workflow
Engine

LDAP

Worklist

1. Treat a patient
2. Who is
responsible?

3. Where is their
worklist?

4. What happens
next? 5. Insert work

item.

Process
Templates

Figure 5. Internet Workflow for the Enterprise

review of work on Rainman and pointed out deficiencies in
the WfMC architecture [26]. More in particular, this stan-
dard is not well-equipped for managing workflows over the
Internet as the workflow server is monolithic, worklists are
hidden within the workflow server, and the connection be-
tween clients and the server is synchronous [25]. This yields
an inflexible and non-scalable solution.

”Big Workflow” was implemented based on several
fundamental requirements. Any server on the Internet
can host any component of the system (process manager,
workflow engine, observers, worklists). W3C standards
(HTTP/XML/SOAP/LDAP, see http://www.w3c.org/xml)
was used exclusively in the implementation. There was
no single point of failure, and any system that supports an
XML remote procedure call (SOAP) could participate in the
workflow.

Workflow can be viewed as a primary component in ar-
chitecting applications where flow of control is abstracted
out of application business logic. The application model
layer (see figure below) becomes a set of services that can
be manipulated by a workflow engine. Alternatively, a
legacy system can expose a set of services that can be driven
by an external workflow engine. If the user can create
and alter process definitions (workflow protocols), a process
definition can serve as a simple agent which drives business
processes.

The workflow system is composed of a process manager
that receives an event. The process manager then looks in
the LDAP for a URL for the appropriate process template,
policy manager, and workflow engine. The process man-
ager using the workflow engine to determine the next step
in the process, queries the policy manager to see who is
responsible for that step (human or machine), queries the
LDAP for the URL of the worklist for the responsible party,
and posts the work item on the appropriate worklist some-
where on the Internet (see Figure-5).

The system can set up multiple Observers to view the
0-7695-1435-9/02 $1
state of any workflow anywhere on the Internet. A Work-
list will notify participating Observers upon any change in
state. A distinguishing feature of this implementation is that
all workflow context is distributed to worklists. There is no
central point of control. Any Workflow Engine on an server
on the Internet can drive the workflow process. If an Ob-
server notices that a workflow process is not completing in
an appropriate period of time, the Observer can delegate this
work item to another server. Thus the system as a whole is
fault tolerant and scalable with the capability of automati-
cally routing around bottlenecks.

This system was the first fully distributed Internet work-
flow implementation that was sufficiently scalable, fault-
tolerant, and about to reroute around bottlenecks or fail-
ures known to the OOPSLA’99 Workflow Workshop par-
ticipants. In the view of IBM T.J. Watson Laboratory sci-
entists, it transcended anything created at IBM. Any appli-
cation on the Internet that exposed a set of services with
an XML/SOAP interface could participate in any workflow.
Such applications could be automated to interoperate on a
global scale. This was viewed as a basic platform on which
to build the next higher layer of an architecture that could
support goal-seeking CAS behaviors. This is a major thrust
of future research directions.

7 Agententifying Business Objects

Engineers working on Business Object Component Ar-
chitectures and EAI would benefit by gaining an under-
standing of CAS concepts and applying them to their work.
These concepts are larger in scope and broader in applica-
tion than some of the Business Object work now under de-
velopment [11], [4]. Some of the best logical and mathe-
matical minds of our time are gravitating to CAS research.
We can expect fundamental breakthroughs in our under-
standing of how to build complex adaptive systems that
could translate directly to Business Object Component Ar-
chitectures if the dialogue and definitions used by Business
Object specialists aligned with CAS research. Furthermore,
the Business Object community could provide some of the
best testing ground for CAS concepts and fill in the major
gap in CAS research by providing hard emperical data on
production EAI systems exhibiting CAS qualities.

Interactive, autonomous, business object components
could evolve independently with a full implementation of
an agent-based enterprise system. Some of these compo-
nents could be intelligent agents roaming the net to perform
complex tasks based on enterprise workflows. Workflows
in these systems must be managed in a more sophisticated
way than current Workflow Coalition or the Object Man-
agement Group specifications prescribe [29]. They will ex-
7.00 (c) 2002 IEEE 8

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
hibit complex behaviors, catastrophic events, and chaotic
interactions, all phenomena subsumed under the umbrella
of ”complex adaptive systems (CAS).” They are under in-
tensive research for use in predictive economic models (let
the computer beat the stock market, deploy new derivatives,
or perform arbitrage), the building of artificial life forms
for the analysis of biological systems, computer models that
can independently adapt and evolve, ”avatars” that can per-
sonally represent the creator in an Internet chat room, to
note only a few examples.

The previous examples had static implementations that
did not allow the system to adapt its operations based on the
dynamic state of the runtime environment. Next generation
systems will allow business object components to decide
with whom to collaborate, what services to offer, what ser-
vices to request, and what visible behaviors to exhibit [19].
Business object (BO) components need to be “agentified”
using a multilayered architecture.

Coordination between BOs is carried out by ”conversa-
tions” based on well-known coordination strategies [15]. A
Business Object Communication Language (BOCL) needs
to be standardized as part of a Business Object Component
Architecture (BOCA) to provide consistent interoperablility
between business object component systems. Some work
in this area has already been done, e.g., the development
of a special version of the Formal Language for Business
Communication (FLBC) [34], that is capable to formally
describe communicational business patterns between two or
more intelligent agents. Assuming that operations in a BO
are packaged into workflows that can be driven automat-
ically by a ”Big Workflow” implementation, a BO could
dynamically aggregate BO building blocks to execute goal
seeking behavior.

These intelligent agents constitute the next higher level
of abstraction to business object technology, and design on
the basis of CAS characteristics, are capable of not only
modeling and implementing business processes based on
“natural” business object technology, but at the same time
negotiating with other agents about their (mutual) goals
[27], and dealing with change a more pro-active way than
ever before.

8 Conclusions and Future Research

Business object components that evolve over time are
complex systems. If progamming is required, they evolve
slowly. If adaptation is automated, they evolve quickly. By
viewing business object systems through the ”lens” of CAS
we can better assess their flexibility and adaptability and
evaluate their architecture on a scale of poor to excellent.
0-7695-1435-9/02 $1
The three case studies presented show (1) the integration
of legacy systems through ”capturing” the legacy systems
by wrapping them with a new layer of technology, (2) the
”subsumption” of legacy systems by layering them below a
new generation of technology, and (3) integrating advanced
concepts is distributed workflow into the subsumption ar-
chitecture to provide a framework for agent based evolution
of business object systems.

The future direction of research is to integrate agent-
based, conversational business objects into a workflow
framework to produce a CAS system that can evolve with
minimal human intervention. New components should be
capabable of being introduced into the architecture and de-
tect how to plug and play with previously existing compo-
nents. In this way, we could have a software architecture
that could evolve as quickly as business processes are now
evolving in 21st century organizations.

References

[1] Abelson, H., Sussman, G.J., et al. Structure and in-
terpretation of computer programs. Cambridge, MA,
MIT Press, 1996

[2] Arthur, W. B. (1994). On the Evolution of Complexity.
Complexity: Metaphors, Models, and Reality. Pro-
ceedings Volume XIX, Sante Fe Institute Studies in
the Science of Complexity. G. A. Cowan, D. Pines
and D. Meltzer (eds), Addison-Wesley, 1994.

[3] Bosak, J. XML, Java, and the future of the Web. Sun
Microsystems, 1997.

[4] M.L. Brodie. The emperor’s clothes are object
oriented and distributed. In M.P. Papazoglou and
G. Schlageter, editors, Cooperative Information Sys-
tems: Trends and Directions, pages 15–48. Academic
Press, 1998.

[5] Brown, W. J. . AntiPatterns: refactoring software, ar-
chitectures, and projects in crisis. New York, Wiley,
1998.

[6] Bushko, R. (1997). Conference overview: Chairper-
son’s remarks. Future of Health Technology, MIT Me-
dia Laboratory, Cambridge, MA, FHTI.

[7] Cowan, G. A., D. Pines, et al. Complexity :
metaphors, models, and reality. Reading, Mass.,
Addison-Wesley, 1994.

[8] Curran, T. and Ladd, A. (2000). SAP R/3 Business
Blueprint: Understanding Enterprise Supply Chain
Management. Prentice Hall, Upper Saddle River, 2nd
edition.
7.00 (c) 2002 IEEE 9

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
[9] P. Eeles and O. Sims. Building Business Objects. John
Wiley & Sons, New York, 1998.

[10] Franklin, M. J., M. J. Carey, et al. Transactional
Client-Server Cache Consistency: Alternatives and
Performance. ACM Transactions on Database Sys-
tems 22(3): 315-363, 1997

[11] Herzum, P. and Sims, O. Business Component Factory
John Wiley & Sons, New York, 2000

[12] Hofstadter, D. R. Gödel, Escher, Bach : an eternal
golden braid. New York, Basic Books, 1979

[13] Holland, J. H. Hidden order : how adaptation builds
complexity. Reading, Mass., Addison-Wesley, 1995.

[14] Inglehart, J. K. The Internet and Health: Vision.
Health Affairs 19(5): 8, 2000.

[15] Jennings, N., K. Sycara, et al. A roadmap of agent
research and development. Autonomous Agents and
Multi-Agent Systems, 1(1): 7-38, 1998.

[16] Kohn, L. T., J. Corrigan, et al. To err is human : build-
ing a safer health system. Washington, D.C., National
Academy Press, 2000.

[17] Lee, S., C.-S. Hwang, et al. Supporting transac-
tional cache consistency in mobile database applica-
tions. Proceedings of the ACM international workshop
on Data engineering for wireless and mobile access,
Seattle, ACM, 1999.

[18] Love, T. Object Lessons: Lessons in Object-Oriented
Development Projects. New York, SIGS Publications,
2000.

[19] Maamar, Z. and J. Sutherland. Toward Intelligent
Business Objects: Focusing on techniques to enhance
BOs that exhibit goal-oriented behaviors. Communi-
cations of the ACM 43(10): 99-101.

[20] Minsky, M. L. The society of mind. New York, Simon
& Schuster, 1998.

[21] Napoleone, D. and M. Berger. Physician Order Entry
Implementation at Montefiore Medical Center. TEPR
2000, San Francisco, CA, TEPR., 2000

[22] Nielson, H. Introduction to SOAP. OOPSLA XML
Process and Objects Symposium. Proceedings of
the 15th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications,
Minneapolis, ACM.
0-7695-1435-9/02 $17
[23] Object Management Group. Common facilities RFP-
4: Common business objects and business object fa-
cility. Technical Report OMG TC Document CF/96-
01-04, Object Management Group.

[24] Paul, S., E. Park, et al. RainMan: A Workflow System
for the Internet. Technical Report. IBM T.J. Watson
Research Center, 1997.

[25] Santanu Paul, Edwin Park, Jarir K. Chaar: RainMan:
A Workflow System for the Internet. Symposium on
Internet Technologies and Systems, Monterey, Cali-
fornia December 8-11, 1997

[26] Paul, S., E. Park, et al. Essential Requirements for a
Workflow Standard. In: Business Object Design and
Implementation II: OOPSLA’96, OOPSLA’97, and
OOPSLA’98 Proceedings. D. Patel, J. Sutherland and
J. Miller (eds). London, Springer-Verlag: 100-108,
1998.

[27] Papazoglou, M. Agent Oriented Technology in Sup-
port of E-Business: Enabling the Development of
“Intelligent” Business Agents for Adaptive, Reusable
Software Communications of the ACM, 44(4):71-77

[28] Prins, R. Developing Business Objects: A Framework
Driven Approach. McGraw-Hill Publishing Company.

[29] Schmidt, M.-T. Building Workflow Business Objects.
In: Business Objects Design and Implementation II:
OOPSLA’96, OOPSLA’97 and OOPSLA’98 Work-
shop Proceedings. D. Patel, J. Sutherland and J. Miller
(eds). London, Springer-Verlag, 1998.

[30] Starfield, B. Is US Health Really the Best in the
World? JAMA 284(4): 483-485, 2000.

[31] Sutherland, J. and S. Alpert Big Workflow for En-
terprise Applications. In: OOPSLA Workshop on the
Implementation and Application of Object-Oriented
Workflow Management Systems II., Denver, CO.

[32] Van den Enden, S., E. Van Hoeymissen, et al. A
Case Study in Application Integration. In: OOPSLA
Business Object and Component Workshop. 15th
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, Minneapolis.

[33] Wegner, P. Interactive Foundations of Object-Based
Programming. IEEE Computer 28(10): 70-72, 1995.

[34] H. Weigand and W.-J. van den Heuvel, Meta-Patterns
for Electronic Commerce Transactions based on
the Formal Language for Business Communication
(FLBC), International Journal of Electronic Com-
merce, 3(2): 45-66, M.E. Sharp, Inc, 1999
.00 (c) 2002 IEEE 10

	HICSS35 2002
	Return to Main Menu

