RainMan: A Workflow System for the I nter net
SantanWPaul, Edwin Park, angarirChaar

IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract

As individuals and enterprises get interconnected via
global networks, workflows that scale beyond
traditional organizational boundaries and execute
seamlessly across these networks will become relevant.
We address the problem of designing a scalable
workflow infrastructure for the Internet that supports
both flexibility in workflow participation and
interoperability between heterogeneous workflow
system components.

RainMan is a distributed workflow system developed in
Java that lives naturally on the Internet. RainMan is a
loosely-coupled collection of independent services that
cooperate with each other rather than a monolithic
system. Some of the useful features of RainMan are
browser-based workflow specification, participation,
and management, and dynamic workflow modification.
The RainMan system is based on RainMaker, our
generic workflow framework that defines a core set of
well-defined interfaces for workflow components.

1. Introduction

Workflow systemsare essentialto organizationsthat
needto automatetheir businessprocessegSilver95].
The attraction of these systemsis that they help
organizations specify, execute, and monitor their
business processesin an efficient manner over
enterprise-level networks [FIMa, VisFlo, InConc,
ActWork]. Workflow systems provide improved
throughput and tracking of processes,and better
utilization of organizational resources.

As individuals and organizations become
interconnectedia global networkssuchasthe Internet,
they will attemptto teamup in variouswaysto share
work and processesacross traditional organizational
boundariesAn Internetinfrastructurethat enablessuch
interactions as workflows would be of great value;
unfortunately, traditional workflow systemsdesigned
for centralized workflow execution do not lend
themselveswell to thesenew workflow applications.
Internet-wideworkflows require an infrastructurethat
supportsdecentralizedworkflow execution,workflow

system interoperability, dynamic workflow
modification,and low-costworkflow participation.The
proprietaryand monolithic designof currentworkflow
systems makes it very difficult to address these
requirements.

The Workflow Management Coalition (WfMC) has
proposeda referencearchitectureanddefinedinterfaces
for vendors of traditional workflow systems to
interoperatgWfMC]. The WfMC standardis a useful
stepin the direction of interoperability, however, its
main shortcomingis that it promotesa monolithic
workflow system architecturethat is not flexible or
scabble enoughto addressthe needsof Internet-wide
workflow applications which must necessarily be
loosely-coupled.

We designed RainMan as a distributed workflow

system for the Internet. The system comprises a

collection of independentand lightweight serviceson

the network. Our Java implementation uses open
standardsand Web browser-basediserinterfaces.We

are using RainMan to experimentwith a range of

interesting features such as dynamic workflow

modification which allows a workflow graph to be

changedduring execution, disconnected participation

which allows participants designersand administrators
on the Internet to be infrequently connectedto the

network, and downloadable workflow execution which

allows workflow subprocesse® be downloadedacross
the Internet on demand.

RainManis basedon RainMaker, our genericworkflow

frameworkthat definesa core setof abstractinterfaces
for workflow components. The main purpose of

RainMaker is to facilitate the design and
implementationof flexible, interoperableand scabble

workflow system components.

EvalBusinessPlan
EvalApp CreditCheck Decision
EvalPaymentPlan

Figure 1: A Business Loan Approvalorkflow

2. Workflow Systems Background

Thetraditional useof workflow systemdhas beeiin the
automation of highly structured, process-based
applicationsthat are commonto banksand insurance
companies. Figure 1 shows a typical (simplified)
BusinessLoanApproval workflow in a bank. Workflow
systemsprovide extensivesupportfor the designand
automationof suchapplicationsin an efficient manner.
Some of the important features they provide are:

1. Specification Tools. These are used to specify
processesusing high-level specification languages.
Thereis no commonly-acceptetiasisfor specification
languages,each workflow system imposes its own

language which can be based on directed acyclic

graphs,rules, state machines,Petri-nets,or other any

formalism.In generaljt is commonpracticeto program
workflows visually asa directedgraphwherethe nodes
representactivities and the arcs representcontrol and

data flows between activities.

2. Execution environments. A workflow system
provides an execution environment for workflow
instances;this involves interpreting the process by
steppingthrough the activities and assigningthem to
appropriateorganizationalresourcessuch as humans,
applications, and othevorkflow systems.

3. Audit Logs and Tools. These are necessaryto
monitor and track the progressof workflow instances
through theworkflow system.

4. Worklist Management: Managemenbf worklists;
worklists are persistentstoragelocationswherehuman
participants receive work assigned to them.

In effect, traditionalworkflow systemsare sophisticated
processspecificationand executionenvironmentsthat
allow organizationsto run process-basedpplications
efficiently, within the contextof a closedenvironment
over which the workflow system has significant
authority.

In responseto a growing number of proprietary
workflow systems, the Workflow Management
Coalition has defined a set of interfacesto enable
workflow systeminteroperability. Theseinterfacesare
tied to a workflow systemarchitectureknown as the

WIMC ReferenceModel (Figure 2) which defines
interfaces between workflow servers and other
componentsuchas processdefinition or specification
tools, workflow client applications, invoked

applications,administrativetools, and other workflow

servers. The specific details of these interfacesare

described ifWfMC].

Process
DefinitionTool

i interface 1

| Workflow
interface 5 Server

interface /

Workflow
Client
Applicatons

Workflow
Server

interface 4

interface 3

Invoked
Applications

Figure 2.WfMC Reference Model

The architecturedefinedby the WIMC standards not
well suitedfor workflow executionon the Internet.The
main problemis thatthe workflow serveris monolithic.
It is responsible for process execution, auditing,
managementof the organizational directory, and
distribution of activities to appropriate participants
(performing role resolution as necessary).

Most importantly, the serveris responsiblefor hosting
and managingworklists on behalf of all participants.
This is problematic;since worklists are hidden within
the workflow server (not externally addressable),
activitiescanbe sentonly to workliststhatresidein the
sameworkflow server.Clients participatingin multiple
workflows on heterogeneousservers must have a
worklist on eachserverand must manageeachof the
worklists (Figure 3).

nnnnnnnnn

Workfiow
Server

THISE

Figure 3: The PulModel

In addition, the workflow client application must
managemultiple connectiondo eachof theseworkflow

serverssince the architectureassumesa continuously
connectedworkflow client. This is not a scalableor

flexible solution, especiallyif oneis to participatein a
large numberof workflows on the Internet,or usethin

clientsor PDASs, or operatein adisconnectednode.An

analysisof the WEMC architecturerevealsadditional
problems for decentralized workflow execution;
interested readers may examine them elsewhere
[Paula97 Schu9e].

3. New Workflowson the Internet

In RainMan,we explorethe potentialof the Internetto
enable decentralized workflow execution via
interoperableworkflow componentshat reside across
this global infrastructure We hopeto enablenewkinds
of workflows involving dispersedndividuals, multiple
organizations, scattered network resources, and
heterogeneousvorkflow systems.A few motivating
examplesof workflows that shouldbe possibleoverthe
Internet are presented here.

Considera virtual teamof IT consultantdrom different

organizationsscatteredacrossthe globe, working on a

project that is coordinated via workflow. The

consultantsnay be mobile andintermittently connected
to the network. Irrespective of location, the project
leadermustmonitor the workflow andwork assignedo

consultants must appear on their worklists. Each
consultantmay participatein many other workflows at

the same time.

In such decentralized workflows, participants must
receive work from multiple workflows using
heterogeneouslientsrangingfrom desktopso laptops
to PDAs (Figure4). Thework distributionmodelneeds
to bedifferentfrom that proposedoy WfMC. Insteadof

participants connectinp workflow serversexplicitly to

pull their work, the workflow infrastructure must

automatically route work to them over a global network.

Workflow Client (disconnected)
o

Network services

Workflow Client

Workflow Client

Workflow Server

Figure 4: Decentralizedorkflow Execution

Next, considerthe BusinessLoanApproval workflow in
Figure 1 running on a bank’s workflow server. The
CreditCheck stepmay itself be a nestedsubprocesshat
is delegatedo a CreditEvaluatiorfirm with a workflow
serversuppliedby a differentvendor.During execution,
the bank’s serverwould notify the firm’s serverto start
an instanceof its local CheckCreditRatings workflow.
On completion of the subprocessthe bank’s server
would resumeits suspendedvorkflow (Figure5). With
global connectivity, these peer-to-peer workflows

betweenheterogeneouserversare possible.In fact,
Interface4 of the WfMC standards designedo enable
suchworkflow interactions.However,the drawbackof
the Interface4 approachis the high costof settingup
such interactions, and significant pre-agreement
required between participating servers.

Bank: Loan Approval Process

EvalBusinessPlan
CreditCheck Decision

ntgrn&t

Start_Process (| Data

*+._Process_Complete (Resuits)

CheckDebts

Eval Firm: Check Credit Ratings Process

Figure 5 Peer-toPeerWorkflow Execution

Finally, as electronic commerceapplicationsbecome
available on the Internet, it is conceivable that
workflows may be downloaded for just-in-time
execution. Downloadable workflows make sense
especiallyin caseswvherepre-installingand maintaining
workflows is not cost effective. For example,consider
an education brokerage service on the Internet
[Hama96]that specializesn locating customeducation
services (Figure 6).

7 Download

Education Brokerage
Request forProposal A

Download

Content Provider A

Content Provider B

Dowriload-—-.

Internet

Figure 6: Downloadabl@/orkflow Execution

In a plausible scenario, the Brokerage workflow
downloadsa RequirementGathering subworkflowto the
client organizationandrequeststs execution.Next, the
Brokerage workflow downloads the requirements
gathered to content providers along with a
RequestForProposal subworkflow that the latter must
execute to create the propogd the end, the brokerage
comparesall the proposalsreceived and notifies the
client.

To enableworkflows such as theseon the Internet,
significantissuesrelatedto securityand organizational
privacy must be addressedSuch services,basedon
state-of-artdistributed systemssecurity considerations,

will have to coexist with thevorkflow infrastructure.

4. RainM aker Workflow Framewor k

RainMakeris a genericworkflow frameworkwe have
developedo build interoperablavorkflow components.
The details of the framework are available elsewhere
[Paulb97]; only a brief outline is presentedin this

section.

RainMakeridentifiesfour importantabstractionsvithin
the workflow domain. Workflow instances are
considered Sources, or service requesters Sources
generate Activities, or service requests that are
delegated out. Instances of humans, applications,
organizations,and other entities that handle these
delegated requests are considered Performers, or
service providers. Performersmanageunits of work
called Tasks, which implementthe delegatedrequests
issuedby Sources.It is an important characteristicof
theworkflow domainthat Taskscanbe long-running.A
centralfeatureof RainMakeris that a Task may be a
workflow instancethatrecursivelyactsasa Sourcethis

providesnaturalsupportfor delegationof subprocesses.

The core RainMaker interfacesthat help supportthis
execution model are

* PerformerAgent: An abstract interface that is
implementedby Performerson the network. The
interface provides mechanismsfor delegating,

controlling, and querying Tasks on the Performer.

* SourceAgent: An abstracinterface implementely
Sourceson the network. It provides a callback
mechanisnfor Performersto return the resultsof
Tasks to Sources.

For the remainder of the paper, the italicized
SourceAgent and PerformerAgent refer to the
RainMaker abstractinterfaces.The terms Sourceand
Performerare usedgenericallyto refer to entities (or
objects) that implement the RainMaker SourceAgent
andPerformer Agent interfaces respectively.

The PerformerAgent and SourceAgent interfaces
describe how proprietary Sources and proprietary
Performerscan interactwith eachother (Tables1 and
2). In essencethe PerformerAgent interface conceals
the internalsof how a Performeror service provider
actually performs Tasks in responseto the Task
requestsSymmetrically,the SourceAgent interfaceis a

callbackinterfaceimplementedto concealthe internal
detaik of how the Sourceactually generate#\ctivities,

issues Task requests,and handles responsesfrom
Performers.The interfacesalso describethe control
mechanisms by which Tasks can be suspended,
resumedand aborted;and query mechanism®y which
their statuscan be tracked. The interaction between
Sources and Performers is shown in Figure 7.

Performer Agent interface
Li st (TaskDefinition)::listTaskDefinitions()

ITaskl D: : cr eat eTask(Sour ceAgent sour ce,
ActivitylD activityid,
TaskRequest taskreq)

Abor t | D: : abort Task(Taskl D t aski d)
ISuspendl| D: : suspendTask(Taskl D t aski d)
Resunel D: : resunmeTask(Taskl D t aski d)
ITaskSt at us: : quer yTask(Taskl D t aski d)
i st(TasklD)::1istTasks()

Table 1:PerformerAgent interface

SourceAgent interface

IConpl et edl D: : conpl et edTask(

Per f or ner Agent per f or ner,
Activityl D activityid,
TaskResponse t askresp)

Ref usedl D: : r ef usedTask(
Per f or mer Agent per f or ner,
Activityl D activityid)

For war dedl D: : f or war dedTask(

Per f or ner Agent perf or ner,
Activityl D activityid,

Per f or ner Agent newper f or ner,
Taskl D taski d)

Bool ean: : seekPer ni ssi onToSt art Task(
Per f or ner Agent per f or ner,
Activityl D activityid)

Table 2:SourceAgent interface

Task
request
create Task

—— —a

SourceAgent PerformerAgent

Task complete
Task
response

Figure 7: Source and Performeteraction

Source Performer

In addition to the core interfaces, RainMaker also
definesthe Worklist interface(Table 3). Worklists are
an importantworkflow metaphorsimilar to electronic
mail boxes; they provide a mechanismfor human
participants to accesswork assignedto them by
workflow systemslin the caseof RainMaker,Performer
entities that represent human participants on the
networkcanimplementthe Worklist interfaceandallow
participantsto view and accesshe Task Requestsent
to them by various Sources.

Worklist interface

Li st (WorkltenDescriptor)::getWrklistlndex()
Mor ki t emRequest : : get Workltem(Worklteml D wi d)

Voi d: : conpl et edWor ki t en(
Workltem D wid,
Wor kl t enResponse wr esp)

Voi d: : ref usedWor kl tem(Workl tem D wi d)

Voi d: : f or war dWor ki t enq
Per f or ner Agent newper f or ner,
Taskl D taski d)

Table 3:Worklist interface

The strengthof the RainMaker framework lies in its
generalizedush model of Taskdistributionthatallows
Tasksto be delegatedto Performersindependent of
their implementation.This aids the interoperability of
heterogeneousworkflow systems and components.
Implementationsof the PerformerAgent interface can
represent arbitrary service providers: humans,
applications,roles, organizationalunits, and workflow
systems.Iimplementationf the SourceAgent interface
can embody heterogeneousworkflow applications
described as rules, asntrol/data flow graphs, and even
non-workflow applicationssuch as collaborationsor
human Sources.

Builder &
Monitor Applet

//‘ Worklists v

/ N
/ N
/ N
4 A
Worklist Worklist
Client Applet Client Applet

Figure 8:RainManSystem Design

5. TheRainManSystem

The RainMan system (see Figure 8) is a distributed
workflow system prototype written in Java using
RainMakerinterfaces.lt consistsof a loosely-coupled
collectionof distributedlightweight servicesequiredto

deliver workflow functionality to Internet users. It

currently consists of approximately 60 Java classes
developedwith Java JDK 1.1.4 and it usesJava’'s
Remote Method Invocation (RMI) for transport
betweerdistributed component3hetransport habeen

designedo bereplaceablgit canbe reimplementedn
top of any messagingsystem. RainMan runs on a
TCP/IPtoken ring network ofVintel machines.

5.1 RainMan User Interface Components

The user interface componentsof RainMan allow
workflow users to interact with the runtime
environment. The currently available ones are the
Builder, the Worklist Client, and the Administrator,all
implemented as Java applets. This makes any
Java-compliantWeb browser a usable client for all
RainManuserinterfacesand hasthe additionalbenefit
of makingRainManuserinterfacecomponentgortable
and hardware-independent.he Builder and Worklist
Client are described in this section.

5.1.1 RainMan Builder Applet

The RainMan Builder (see Figure 9) in its current
incarnationis a single Javaappletthat combinesthree
functions.lt is an interactivegraphicalenvironmentor
specifying workflows as directed, acyclic graphs.
Performersare assignedfrom the RainMan directory
service view available within the Builder. The
service-specifiaspectof anActivity arehandledusing
the JavaBeanscomponentobject model. Workflow
graphscan be savedto and loadedfrom a workflow
specification repository.

The Builder also actsas a workflow graphinterpreter
(Source)and implementshe SourceAgent interface. For
an executingworkflow, the Builder postsTaskrequests
to specified Performers.On receiving notification of

results, it inspectsthe workflow graph and poststhe

nextsetof TaskrequestsSincethe Builder dynamically
interpretsthe workflow graph, it is possibleto change
or refine the ‘downstream’ specification of the

workflow graph even after the workflow has been
started. This is a useful feature that enables the

definition and execution of ad hoc processes,and

distinguishes RainMan from traditional workflow

systemslt allows for dynamicupdateso the workflow

graph to deal with emerging scenarios.

This is particularly relevantto decentralizedvorkflow
execution on the Internet, because we expect
Performersto have significant autonomy over their
internal domains and hence be capable of raising
exceptionsin responsdo Task requestfrom Sources.
In addition,Performerscanchangetheir capabilities as
well as join or leave the network at will. Workflow
systemsthat cannotbe dynamically modified can be
very limiting in such situations.

Ei Hotlavaltm): Workflow Applet m M [=] El Xl

File Edit “iew Placez Help

Target
oct16,300pm| G0 (-
Marme
F'Iac:e:l hitp-iiinterprise/demorbuilden
Applicatian
Daocurnent

santanu

By

create proposal

I =any=

rainman.doc

e

Save | Load |

il &>

G
iy
&

Figure 9: Builder Applet

Supportfor groupsand roles is an important part of
workflow execution. Workflow systemsare used to
improveprocesshroughput;oneof thewaysto achieve
that objectiveis to assignan Activity to arole at build
time. A role represents groupof ‘fungible’ Performers
(i.e. ‘designer,; ‘tester’, ‘manager’,etc.); the binding of
an Activity to a specific Performeris postponeduntil
execution.In RainMan,we are experimentingwith the
use of special-purposePerformersto manageroles;
section 5.2.3 covers this topic in some more detail.

The choiceof a good workflow specificationlanguage
remains a matter of considerabledebate within the
workflow community.RainManusesa vanilla workflow
specification language based on directed, acyclic
graphslt is importantto realizethat RainManoffers an
excellentinfrastructurefor deployinga wide range of
specificationtools basedon heterogeneoutanguages
since the details (and potential idiosyncrasies of a
specification language are completely encapsulated
within a Sourceimplementatiorand not exposeceither
to the Performer=or to the RainManinfrastructure The
cleanseparatiorof responsibilitiesof workflow routing
and Task executionbetweenSourcesand Performers
respectivelymakes RainMan a suitable infrastructure

for plug-and-playoperationwith heterogeneouSources
and Performers.

Finally, the Builder alsohelpsusersmonitor the stateof
a workflow execution.It providesvisual cuesto the
owner or administrator about the global state of a
workflow in execution at a coarse level of granularity.

Eventhoughthe threefunctionsof Builder, Source and
Monitor are currently physically part of the sameJava
applet, they remain distinct logical entities in our
workflow architecture. The next version of our
prototype will separate some of these functions,
allowing for featuressuchas disconnectedcaind remote
building and monitoring.

5.1.2 RainMan Worklist Client Applet

The RainMan Worklist Client is a Java applet that
allows usersto accesstheir Worklists from within a
Web browser(seeFigure 10). A Worklist is a remote
Java object on the network that implements the
Performer Agent andWorklist interfacesand actsasthe
Performerfor a humanparticipant.The participantcan
use the Worklist Client to view the contentsof the
remote Worklist, and selectively download specific
Task requests and perform them.

Appropriate Task Handlersare automaticallylaunched
to allow the humanto interactwith TaskrequestsEach
participant or Performerhas a set of capabilitiesin
RainMan. For example, for humans capable of
document processing,the Worklist Client currently
handlesincoming Document_Processing Task requests
via a specialized Task Handler that can locate a
referenceddocumentfrom a network data store and
launchthe necessaryocal application(word processor)
neededy the humanto interactwith the documentOn
completion the TaskHandlerreturnsthe responséo its
Worklist, which in turn returnsit to the requesting
Source.

SinceeachTask requestreceivedfrom the Worklist is
handledlocally on the client machine, disconnected
operationis handledeasily. The client appletneedsto
connectto its remoteWorklist only for the purposesf
receiving and returning Activities. However, a
connectionto the network may still be neededif the
Task needsto reach certain data elementson the

E%’,%Wurklist Viewer for za.__

Yiewws Preferences Exit

network in the course of its execution, or if the
applications needed to perform it are not locally
available.

The RainMan Worklist Client Applet is significant
becauseit offers a valuable proof-of-concept that

demonstratediow humanperformerscan receivework

from heterogeneousvorkflow sourcesusing a single,

unified user interface. Current workflow systems
usually come with proprietary client applicationsthat

provide worklist accessby pulling work from their

proprietaryservers.In contrast,RainManrequiresthat

the Worklist Client pull work only from its designated
Worklist on the network, to which Task requestsare
pushedrom variousworkflow backendsThe RainMan
approachmposesa muchlower burdenon the Worklist

Client since it no longer has to handle multiple

connections,one with each workflow server it is

receiving work from. In an interoperableworkflow

world, an equivalentof the RainMan Worklist Client

Applet could replace proprietavyorklist clients.

=10 x|

Comments?

rite Proposal
Evaluate new hire
Finalize decision
Fead Feport yet?

Ei Hotlavaltm]: BainMan Client

File Edit “iew Places Help

@

F'Iace:l http-linterprisefdemorraing

Oct 17, 11:43 AM |

RainMan Worklist C Mozt uns:

As a RainMan Hsaer, you
network loca Warning: Ap
The applet below lets you scan
wigw your current wi

[/, &

| santanu
‘% ® Fatticipate!

=10 x|

Refresh | E

D|splay

Eﬁf’,ﬂ‘ﬂucument Proceszzing Handler
Activity Exit

Matmne:

_1o[x]|

| Fead Report yet?

De=scription

Daone |
Reazsign |
hore. .. |

Hey, any luck with
last week's report

4

Document

| report.doc

| Activity Handler running...

YWarning: Applet Window

Figure 10:Worklist Client Applet

Task priorities and deadlines, while not yet
implementedin RainMan, can be supported. Such
constraints, based on convention and agreements
betweenSourcesand Performers,can be specifiedas
partof the Taskrequesimessageentto a Performer A

Performerunableto meettheseconstraintsmay refuse
to servicethe request.Similarly, a Sourcemay usethe
deadlineinformationassociatedvith an Activity to time
out on a Performer that does not respond by the
deadline. However,attemptsto generalizethe behavior
of arbitrary Sourcesand Performerswith respectto

priorities anddeadlinedeadsto the broaderguestionof

negotiationprotocolsbetweenSourcesand Performers.

Suchprotocols,while immenselyuseful,havenot been
studied in the context of the RainMaker framework.

5.2 RainM an Runtime Environment

The RainMan runtime environment provides a
collectionof distributedserviceghatrun on the Internet
infrastructure.The user componentsdescribedin the
previous section allow workflow users - workflow
designersparticipants,and administrators- to interact
with these distributed serviceson the network. The
servicescurrently available are the Directory Service,
theWorklist Service, and a variety of Performers.

5.2.1 RainMan Directory Service

The RainMandirectory serviceplays the key role of a
trading service in the RainMan system. It contains
information aboutPerformerson the network and their
capabilities. When a Source needsto issue a Task
requestto a Performer, it first performs a lookup
operation on the directory service to locate the
appropriatePerformeron the network. The directory
serviceinterfacealso providesmethodsto registerand
unregistePerformers. Usinghe Administratorapplet,a
RainMan administrator can manage the directory
service and its contents.Mobile Performersuse the
directory serviceto locatetheir Worklists aswell, thus
enabling true location-independent workflow
participation. For expediency,the RainMan directory
service is currently prototyped as a custom Java
application. We are planning an LDAP-based
[YeongQ5] directoryservicefor the next versionof the
RainMan prototype.

Forwidespreadvorkflow deploymentbn the Internet,it
is necessanyfor the RainMan directory serviceto be
distributed.The designof distributeddirectory services
such as DNS [Mock87] and X.500 [CCITT] can be
used as a guideline for RainMan directory design.
RainMan directoriesin individual domains(a domain
could be an organization,a geographicallocation, a

collection of smaller domains, etc.) can be
hierarchically arranged so that Sources can find
Performersacrossddomains Performerswithin a domain
would always be registeredwith their local RainMan
directory. Sourceswould always lookup their local
RainMan directories for Performers; the local
directories could in turn access other RainMan
directories by traversing the directory hierarchy to
locate matchingPerformers A relatedexampleis that
of theCorbaTradingServicelOMG97]; multiple Corba
Traders can be explicitly linked into a network for
transparent navigation.

5.2.2 RainMan Worklist Service

In workflow systemsworklists are inboxesassociated
with humans.In RainMan,a Worklist is a Javaobject
that implements the RainMaker Workliss and
PerformerAgent interfaces. Therefore, a RainMan
Worklist is a Performerthatis ownedby andrepresents
a human on the network (this is not a limiting
assumption Worklists caneasilyrepresentpplications
as well). Worklists offer persistentstorage of Task
requests posted to humans from Sources.

Source

<>

WAN \

Performer

=

Source

<>

Source

-~ Worklist
get/complete”

i‘“ =

Figure 11: ReusabMorklists

In RainMan, Worklists are treated as addressable
network objects, and provide a level of separation
betweenSourcesand actual humanperformers,which

makes asynchronous exchange of requests and

responsesbetween them possible. In other words,

requestscan be postedto a Worklist on the network

evenwhen the humanperformeris not connectedand

the human can accessand perform them without

connectingto the Source.Most importantly,in contrast
to traditionalworkflow systemsa RainManWorklist is

a first class entity that can be reused by multiple

Sources, thus eliminating the need for explicit,

dedicatedconnectiongo workflow serverson the part

of the performer (see Figure 11). This is in sharp

contrast to the architecture shown in Figure 4.

Worklists on the network are managed by an
independenfRainManWorklist Service.At the present
time, the Worklist Service consistsof a single Java
applicationon the network, called a Worklist Server,
that managesa large pool of Worklists. The Worklist
Serveris analogougo a POP [Myers96] or an IMAP
[Cris93] serverthat storese-mail boxesfor multiple
usersThe clearseparatiorof the Worklist Servicefrom
the Workflow Server is a novel design point in
RainMan.This is usefulbecause¢he Worklist Serviceis
now streamlinedio performa dedicatedfunctionin an
autonomousnanner,anda Worklist Servercanrun on
dedicated powerful computational resources that
guarantee performance, availability, security, and
reliability. Furthermore since Worklists are practically
independenbf eachother,we expectit to be relatively
easyin this architectureto addressscalability in terms
of distributed workflow participantsby implementing
the Worklist Service as a distributed service; new
Worklist Serverscan be addedto the networkto host
Worklists as the numberof participantsincreasesWe

plan to experiment with these issues in the near future.

5.2.3 RainMan Performers

The Performer abstraction is useful in modeling
humans, software applications, groups and roles,
workflow serversandentire organizationghat perform
Taskson behalf of a workflow (seeFigure 12). As we
haveseen,Worklists act as Performersfor humans.In
addition,we arebuilding a hostof otherPerformerghat
can be used by RainMan workflows. An interesting
Performer class is the SMIPGat ewayPer f or mer
thatallows RainManworkflows to sendout e-mail over
the Internet. This Performeris an SMTP client written
in Java thatmplements théerformer Agent interface.lt
can receive SendEmail Task requestsfrom Sources,
connectto a SMTP server,and submitoutgoinge-mail
requests Another implementedPerformerclassis the
Dat abaseQuer yPer f or mer thatcanreceiveSQL
qgueriesfrom a Sourceand interfacewith a relational
database at the back end via JDBC. A
Pal nPi | ot Perforner class has also been
implementedthat allows Worklist accessfrom a US
Robotics Palm Pilot.

With the growinguseof cell phonespagersandPDAs,
it is conceivablethat a Performer and its human
participantmay communicatevia other metaphorssuch
as publish/subscribe (also known as observable/
observer or model/view), and its variations. The
Performerandthe humanmay be co-locatedon a single
machine,or communicateover distancesvia a wide
variety of networks (e.g., wireless, infrared, and so on).

In workflows, groupsand roles are usedto distribute
Task requeststo participants according to certain
policies. The commonly supportedscenarioin current
workflow systemsis the case where an Activity is

assignedto all membersof a role, say insurance
underwriters, and once a role member assumes
responsibilityfor the Activity, it is retractedfrom the

otherrole membersln RainMan,we takethe view that

a wide variety of distribution and retraction policies

may be meaningful,dependingon the application.For

example, considera company that wishesto post a

Request_for_Quotation to eachof its suppliers(these
canbe modeledasPerformers)The companymaywish

to getresultsbackfrom eachof thesesuppliersbeforeit

can proceed with the next step in its workflow

application. Alternately, it may just wish to receive
responsedrom a ‘majority’ of its suppliers.We are

designing concrete classes for Performers that

implementsuch Tasldistribution andretraction policies
basedon roles; additional classescan be implemented
based on the needs of specific applications.

Human
Performer

Figure 12: Heterogeneous Performers

6. Considerations in Workflow

System Design

6.1 Performance

To the bestof our knowledge,there are no published
dataon theperformance andcalabilityof commercially
available proprietaryworkflow systemsHowever,with
the increasingdeploymentof theseworkflow systems,
concernshave beenraisedaboutthe lack of adequate
performance and scalability in even ‘production’
workflow systems (an industry label for workflow
systemsthat specifically addressthe automation of
high-volume, highly repetitive processesuchas those
in banks and insurance companies).

Our view is that the Internetwill further aggravatethe
performance problems of centralized workflow
architectures as they try to interoperate
WfMC-compliant, monolithic workflow servers are

designed to handle process management,worklist
management, auditing, and directory services
simultaneouslyfor hundredsof workflow instancesat
any given time. This architecture may perform
acceptablyas long as the number of participantsis
limited. However,the performancewill degraderapidly
as the number of participants grows large.

The field of workflow urgently needs meaningful
performancebenchmarkshat can be usedto evaluate
existing systemsand their architectures.Until such
benchmarksare established,it is not meaningful to

compare quantitatively RainMan’s performancewith

that of traditional architecturesHowever, we believe
that a compelling qualitative argumentin favor of

RainMan can still be made. The RainMan design
dismantles the traditional monolithic server into a
collection of related components.This can help in

eliminating the potential performancebottlenecksof

workflow servers.For example,the clear separation
between process management (Source-side) and
worklist managemen{Performer-sidewill allow each
of theseto be optimizedindependentlyAs morehuman
Performers join the RainMan system, additional
Worklist Serverscanbe pressednto serviceat different
partsof the network. In a traditional system,additional
worklists would all be addedon the central workflow

server,thus burdeningthe serveritself. In contrast,the
RainMan approachhas no impact on the Sourcesand
their performance.

6.2 Failure Handling and Compensations

Much of workflow researchn recentyearshasfocused
on thetransactionahspectof workflows [Rus94,A196,

Ley95]. The basic objective is to ensure the
recoverability of workflows, since workflows are
long-running applicationsthat can executeover days

weeks or even months. It is fairly well-acceptedin

databaséransactionditeraturethat classicalflat ACID

transactions are not viable in the context of

long-running applications.Workflow researcherhave
thusborrowedconceptdrom nestedransactionssagas,
and spheresof compensatiorto addressthe needsof

workflows. While many of theseideasremainuntested
in commercialsystemsthey appearo be viable in the
context of commercial workflow systemsof today
where the workflow server can exercise significant
control oveworkflow participants.

The decentralizatiorof the workflows, as proposedin
RainMan, altersthe picture significantly. In particular,
if Sourceworkflows areto executeon the Internet,the
autonomy of Performersand their non-proximity to
eachotherandto the Sourceitself mustbe takenas a
given. A Sourcein this contexthasno global authority

or jurisdiction over remote heterogeneousutonomous
Performers,and has very limited visibility of their
internalresourceandmechanismdn effect,all notions
of compensationmust be addressedin terms of
commitmentsbetweenpeers;in effect, the interaction
betweena Sourceanda Performermustbe sufficiently
rich to handlefailures and provide compensationgor
pastservicesasnecessaryT o usea classicalexamplea
Source may be a Travel Booking workflow that
interactswith a Performersuchasa Hotel Server.The
Hotel Server may provide two basic operations -
reserve andcancel - wherecancel is acompensatioffior
a reserve. Becauseof a subsequenthangein travel
plans,the Sourcemay return to the Performerwith a
cancel requeston its pastreserve request.The Hotel
Server,within the limits of its servicecontract,would
have to fulfill this request.The idea of long-running
conversations between autonomousnetwork entities
that engagein businesdransactionshasbeenexplored
in the Coyote project [Dan97]. The Coyote view that
meaningful businesstransactionscan occur despite
limited authority of eachparticipantis a usefulonefor
the Internet; we are exploring how RainMan Sources
and Performers can benefit from the idea of
conversations.

6.3 Decentralized Execution

Traditional workflow systemsare basedon a model of
centralizedworkflow executionithe workflow systemis
responsiblefor managing workflow coordination as
well as activity execution by invoking resourcesor
participants entirely within its scope of authority -
applications, other workflow servers, or human
worklists.

A diametricallyoppositemodel of workflow execution
that can decentralizeboth workflow coordinationand
activity executionhasbeenproposedin the contextof

the Arjuna project [Ran97]. This execution model
decentralizeshe coordinationof a processy installing
‘task controller’ objects in different domains that
coordinatewith eachotherto deliver workflow routing
functionality. Each task controller is a workflow

‘router’ that understandsmece of the overallvorkflow

graph.This executionmodel eliminatesa central point
of failure in a workflow; moreover, workflows can
proceedevenin thefaceof partial networkfailures.The
main consequenceof the Arjuna approachis that
decentralizedworkflow control requires participant
domaing(i.e. serviceproviderdomains)to participatein

workflow routing on behalf of the workflow using a
pre-agreedcoordinationlanguage(a workflow routing
protocol); this imposes computational burdens on

participantdomainsthat would be unacceptabléf the

domainswere autonomousDecentralizedcontrol can
also be expensiveto manage;it is harderto maintain
global stateand makedynamicchangego the workflow
when theworkflow script itself is decentralized.

The RainManexecutionmodelstrikesa middle ground.
It separateshe responsibilityof workflow coordination
from activity execution by creating two classesof
entities, Sourcesand Performers.In effect, while the
coordinationof eachprocessemainslocalizedwithin a
Source object, the actual execution of activities is
decentralizedacross a network of Performersover
which Sourceshavevery limited control. The leverage
in this model arisesfrom the ability of heterogeneous
Sources to share heterogeneous, autonomous
Performers.This approachrespectsthe autonomy of
eachPerformerassumeshat theenvironmentsn which
Sourcesand Performersexecute will necessarilybe
heterogeneousand makesit easierto keep track of
global state as well as support dynamic workflow
modifications.

6.4 Security Considerations

For workflows to run acrosswide areanetworksand
especially across organizations, multiple security
concernsmust be addressedFirst, an authentication
mechanismmust exist to validate the identity of both

Sourceand Performerdomains.This would allow basic
functions such as Worklist accessand Performer
invocation to be done in a securefashion only by

authorizedusersor componentsSecond accessontrol

rights needto be describedand enforcedin a scalable
fashionto controlaccesgo methodson Performersand
Sources. Third, the integrity and privacy of Task
requestandresponsegxchangedetweenSourcesand
Performersshould be maintained.Finally, supportfor

nonrepudiability and enforcement of terms and
conditionsis neededWe are currently exploring these
issues by drawing from the state-of-practice in

distributed systemssecurity. Many of theseproblems
can be easily alleviated in the case of workflows

betweentrusted partiesby settingup private channels
(Intranets or Extranets) between the participant
individuals and organizations.

7. Conclusions

Our researchis directed at designing an Internet
workflow infrastructurethat is scabble, flexible, and
interoperableThis is a relevantandimportantproblem
sinceindividuals and organizationsare rapidly getting
interconnectedThis widespreadinterconnectivity can

be exploited to enable new kinds of process-based
applications.

The RainMaker framework defines the essential
abstractionsof a workflow system and facilitates
interpretable workflow components. Using the
RainMakerframework,we haveimplementedrainMan
a distributed object-orientedworkflow systemwritten
in Java. Workflow managementactivity distribution,
directory services,and worklist managementare all
treatedas independentservicesthat work togetherto
deliver workflow functionality to Internetusers.This is
a radical departurefrom traditional workflow systems
basedon monolithic, server-centricarchitecturesThe
RainMansystemusesopenstandardaindWeb-browser
baseduser interfacecomponentsThe systemis being
usedto experimentwith a rangeof interestingfeatures
such as decentralizedworkflow execution, dynamic
workflow modification, and disconnected participation.

While RainManhashbeendesignedas an infrastructure
for workflow execution, it offers insights into the
broadermproblemof designinglong-runningapplications
on a network. In effect, RainMan highlights the
importanceof separatinghe responsibilitiesof service
requesters(in this case, workflows) from service
providers (in this case, humans, applications,
organizations, etc) via clean interfaces (i.e.
SourceAgent and PerformerAgent), and assumingthat
entities that implement these interfaces are
heterogeneouand autonomousilt offers a peer-to-peer
Taskdelegatiormodelwith a nicerecursivebehavior;a
Performerthat receivesTask requestsfrom a Source
canitself actasa Sourceof Tasksfor otherPerformers
on the network.

8. Acknowledgments

We thank David Hutchesand SastryDuri for various
discussionon workflows and compensationsiVe also
thank Carl Staelinand the reviewersof this paperfor
their valuable comments.

References

[ActWork]

[AI96]

[CCITT]

[Cris93]

[Dan97]

[FIMa]

[Hama96]

[InConc]

[Ley95]

[Mock87]

[Myers96]

[OMGO7]

Action Technologies, Action Workflow,
http: //imww.actiontech.com

G. Alonso, D. Agrawal, A. El Abbadi, M.
Kamath, R. Gunthor, and C. Mohan
Advanced Transactional Models in
Workflow Contexts, In Proceedingsof
ICDE, 1996.

CCITT/ISO, X.500, The Directory -
Overview of Concepts Models anc
ServicesCCITT/ISO IS 9594.

M. Crispin, IETF RFC 2060, Interne
MessageAccessProtocolversion4 rev 1,
December 1993

A. Dan,andF. Parr,The CoyoteApproact
to Network Centric Service Applications
7th International Workshop on High
Performance Transaction Systems
Asilomar, California, September14-17
1997.

IBM Corpomtion, FlowMark Workflow,
http: //imww.softwar e.ibm.com/ad/flowmark
M. Hamalainen A. B. Whinston, and S.
Vishik, Electronic Markets for Learning
Education Brokerages on the Internet
CACM, Vol. 39, Number 6, June 1996.
InConcert Inc., InConcert Workflow,
http: //mww.inconcert.com

F. Leymann Supporting Busines
Transactions via Partial Backwart
Recovery in Workflow Management,in
Proceedings of BTW’95, Dresder
Germany, 19955pringerVerlag.

P. Mockapetris IETF RFC 1034/103t
Domain Names- Conceptsand Facilities
Implementation and Specificatior
November 1987.

J. Myers and M. Rose,IETF RFC 1939
Post Office Protocol - version 3, May
1996.

OMG Trading Object Service, CORBA
Services: Common Object Service
Specification, Chapter 16, July 1997.

[Paub97]

[Paulb97]

[Ran97]

[Rus94]

[Schu96]

[Silver95]

[VisFlo]

[WFMC]

[Yeong95]

S. Paul, E. Park, and J. Chaar, Essentie
Requirementsfor a Workflow Standarc
OOPSLA Workshopon BusinessObject:
Design & Implementation, October 6th,
1997,

http: //mww.tiac.net/user g/jsuth/oopsla97

S. Paul,E. Park,D. HutchesandJ. Chaar
RainMaker: Workflow Execution Using
Distributed, Interoperable Component:
IBM ResearctReportnbr. 21008 Octobe
1997.

F. Ranno, S.K. Shrivastava and S.M.
Wheater, A System for Specifiing anc
Coordinating the Execution of Reliable
Distributed Applications, Internatione
Working Conference on Distributec
Applications and Interoperable System
(DAIS'97), September 1997.

M. Rusinkiewicz and A. Sheth
Specification and Execution of
Transactional Workflows, In W. Kim,
Editor, Modern Database Systems: The
Object Model, Interopreability anc
Beyond, ACM Press, 1994.

W. Schulze, M. Bohm, and K. Meyer-
Wegener, Servicesof Workflow Object:
and Workflow Meta-objects in OMG
compliant Environments, OOPSLA
Workshopon BusinesObjectsDesignanc
Implementation, 1996.

B. Silver, The BIS Guide to Workflow
Software, BIS Strategy Decisions, One
Longwater Circle, Norwell, MA 02061
1995.

FileNet Corporation, FileNet Visual
Workflo, http://mww.filenet.com/products/
wwtext.html

Workflow Management

http: //Aww.aiai.ed.ac.uk/ M\FMC
W. Yeong, T. Howes,and S. Kill e, IETF
RFC1777,Light WeightDirectory Access
March 1995.

Coalition

