
Abstract

As individuals and enterprises get interconnected via
global networks, workflows that scale beyond
traditional organizational boundaries and execute
seamlessly across these networks will become relevant.
We address the problem of designing a scalable
workflow infrastructure for the Internet that supports
both flexibility in workflow participation and
interoperability between heterogeneous workflow
system components.

RainMan is a distributed workflow system developed in
Java that lives naturally on the Internet. RainMan is a
loosely-coupled collection of independent services that
cooperate with each other rather than a monolithic
system. Some of the useful features of RainMan are
browser-based workflow specification, participation,
and management, and dynamic workflow modification.
The RainMan system is based on RainMaker, our
generic workflow framework that defines a core set of
well-defined interfaces for workflow components.

1. Introduction

Workflow systems are essential to organizations that
need to automate their business processes [Silver95].
The attraction of these systems is that they help
organizations specify, execute, and monitor their
business processes in an efficient manner over
enterprise-level networks [FlMa, VisFlo, InConc,
ActWork]. Workflow systems provide improved
throughput and tracking of processes, and better
utilization of organizational resources.

As individuals and organizations become
interconnected via global networks such as the Internet,
they will attempt to team up in various ways to share
work and processes across traditional organizational
boundaries. An Internet infrastructure that enables such
interactions as workflows would be of great value;
unfortunately, traditional workflow systems designed
for centralized workflow execution do not lend
themselves well to these new workflow applications.
Internet-wide workflows require an infrastructure that
supports decentralized workflow execution, workflow

system interoperability, dynamic workflow
modification, and low-cost workflow participation. The
proprietary and monolithic design of current workflow
systems makes it very difficult to address these
requirements.

The Workflow Management Coalition (WfMC) has
proposed a reference architecture and defined interfaces
for vendors of traditional workflow systems to
interoperate [WfMC]. The WfMC standard is a useful
step in the direction of interoperability, however, its
main shortcoming is that it promotes a monolithic
workflow system architecture that is not flexible or
scalable enough to address the needs of Internet-wide
workflow applications which must necessarily be
loosely-coupled.

We designed RainMan as a distributed workflow
system for the Internet. The system comprises a
collection of independent and lightweight services on
the network. Our Java implementation uses open
standards and Web browser-based user interfaces. We
are using RainMan to experiment with a range of
interesting features such as dynamic workflow
modification which allows a workflow graph to be
changed during execution, disconnected participation
which allows participants, designers and administrators
on the Internet to be infrequently connected to the
network, and downloadable workflow execution which
allows workflow subprocesses to be downloaded across
the Internet on demand.

RainMan is based on RainMaker, our generic workflow
framework that defines a core set of abstract interfaces
for workflow components. The main purpose of
RainMaker is to facilitate the design and
implementation of flexible, interoperable, and scalable
workflow system components.

EvalApp

EvalPaymentPlan

EvalBusinessPlan

CreditCheck Decision

Figure 1: A Business Loan Approval Workflow

RainMan: A Workflow System for the Internet
Santanu Paul, Edwin Park, and Jarir Chaar

IBM T. J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

2. Workflow Systems Background
 The traditional use of workflow systems has been in the
automation of highly structured, process-based
applications that are common to banks and insurance
companies. Figure 1 shows a typical (simplified)
BusinessLoanApproval workflow in a bank. Workflow
systems provide extensive support for the design and
automation of such applications in an efficient manner.
Some of the important features they provide are:

1. Specification Tools: These are used to specify
processes using high-level specification languages.
There is no commonly-accepted basis for specification
languages, each workflow system imposes its own
language which can be based on directed acyclic
graphs, rules, state machines, Petri-nets, or other any
formalism. In general, it is common practice to program
workflows visually as a directed graph where the nodes
represent activities and the arcs represent control and
data flows between activities.

2. Execution environments: A workflow system
provides an execution environment for workflow
instances; this involves interpreting the process by
stepping through the activities and assigning them to
appropriate organizational resources such as humans,
applications, and other workflow systems.

3. Audit Logs and Tools: These are necessary to
monitor and track the progress of workflow instances
through the workflow system.

4. Worklist Management: Management of worklists;
worklists are persistent storage locations where human
participants receive work assigned to them.

In effect, traditional workflow systems are sophisticated
process specification and execution environments that
allow organizations to run process-based applications
efficiently, within the context of a closed environment
over which the workflow system has significant
authority.

In response to a growing number of proprietary
workflow systems, the Workflow Management
Coalition has defined a set of interfaces to enable
workflow system interoperability. These interfaces are
tied to a workflow system architecture known as the
WfMC Reference Model (Figure 2) which defines
interfaces between workflow servers and other
components such as process definition or specification
tools, workflow client applications, invoked
applications, administrative tools, and other workflow
servers. The specific details of these interfaces are
described in [WfMC].

Workflow
Server

Process
DefinitionTool

Admin/
Monitoring

Tools

Workflow
Client

Applicatons
Invoked

Applications

Workflow
Server

interface 1

interface 2
interface 3

interface 4interface 5

Figure 2: WfMC Reference Model

The architecture defined by the WfMC standard is not
well suited for workflow execution on the Internet. The
main problem is that the workflow server is monolithic.
It is responsible for process execution, auditing,
management of the organizational directory, and
distribution of activities to appropriate participants
(performing role resolution as necessary).

Most importantly, the server is responsible for hosting
and managing worklists on behalf of all participants.
This is problematic; since worklists are hidden within
the workflow server (not externally addressable),
activities can be sent only to worklists that reside in the
same workflow server. Clients participating in multiple
workflows on heterogeneous servers must have a
worklist on each server and must manage each of the
worklists (Figure 3).

interface 2

Workflow
Client

Directory

process interpreter

worklists

Workflow
Server

Directory

process interpreter

worklists

Workflow
Server

Internet

Workflow
Server

Workflow
Server

Workflow
Server

Figure 3: The Pull Model

In addition, the workflow client application must
manage multiple connections to each of these workflow
servers since the architecture assumes a continuously
connected workflow client. This is not a scalable or
flexible solution, especially if one is to participate in a
large number of workflows on the Internet, or use thin
clients or PDAs, or operate in a disconnected mode. An
analysis of the WfMC architecture reveals additional
problems for decentralized workflow execution;
interested readers may examine them elsewhere
[Paula97, Schu96].

3. New Workflows on the Internet

In RainMan, we explore the potential of the Internet to
enable decentralized workflow execution via
interoperable workflow components that reside across
this global infrastructure. We hope to enable new kinds
of workflows involving dispersed individuals, multiple
organizations, scattered network resources, and
heterogeneous workflow systems. A few motivating
examples of workflows that should be possible over the
Internet are presented here.

Consider a virtual team of IT consultants from different
organizations, scattered across the globe, working on a
project that is coordinated via workflow. The
consultants may be mobile and intermittently connected
to the network. Irrespective of location, the project
leader must monitor the workflow and work assigned to
consultants must appear on their worklists. Each
consultant may participate in many other workflows at
the same time.

In such decentralized workflows, participants must
receive work from multiple workflows using
heterogeneous clients ranging from desktops to laptops
to PDAs (Figure 4). The work distribution model needs
to be different from that proposed by WfMC. Instead of
participants connecting to workflow servers explicitly to
pull their work, the workflow infrastructure must
automatically route work to them over a global network.

Internet

Workflow Server

Workflow Server

Workflow Server

Workflow Client

Workflow Client

Workflow Client (disconnected)
Network services

Figure 4: Decentralized Workflow Execution

Next, consider the BusinessLoanApproval workflow in
Figure 1 running on a bank’s workflow server. The
CreditCheck step may itself be a nested subprocess that
is delegated to a CreditEvaluation firm with a workflow
server supplied by a different vendor. During execution,
the bank’s server would notify the firm’s server to start
an instance of its local CheckCreditRatings workflow.
On completion of the subprocess, the bank’s server
would resume its suspended workflow (Figure 5). With
global connectivity, these peer-to-peer workflows

between heterogeneous servers are possible. In fact,
Interface 4 of the WfMC standard is designed to enable
such workflow interactions. However, the drawback of
the Interface 4 approach is the high cost of setting up
such interactions, and significant pre-agreement
required between participating servers.

Bank: Loan Approval Process

Eval Firm: Check Credit Ratings Process

Internet

Start_Process (Data) Process_Complete (Results)

EvalApp

EvalPaymentPlan

EvalBusinessPlan

CreditCheck Decision

EvalAppl

CheckAssets

CheckDebts

Results

Figure 5: Peer-to-Peer Workflow Execution

Finally, as electronic commerce applications become
available on the Internet, it is conceivable that
workflows may be downloaded for just-in-time
execution. Downloadable workflows make sense
especially in cases where pre-installing and maintaining
workflows is not cost effective. For example, consider
an education brokerage service on the Internet
[Hama96] that specializes in locating custom education
services (Figure 6).

Internet

Requirements

Request for Proposal A

Evaluate Decision

Request for Proposal B

Education Brokerage

Content Provider A

Content Provider B

Budget

Start Complete

Educational
Requirements

Download

Start Complete

Course material

Cost

Download

Download

Figure 6: Downloadable Workflow Execution

In a plausible scenario, the Brokerage workflow
downloads a RequirementGathering subworkflow to the
client organization and requests its execution. Next, the
Brokerage workflow downloads the requirements
gathered to content providers along with a
RequestForProposal subworkflow that the latter must
execute to create the proposal. At the end, the brokerage
compares all the proposals received and notifies the
client.

To enable workflows such as these on the Internet,
significant issues related to security and organizational
privacy must be addressed. Such services, based on
state-of-art distributed systems security considerations,

will have to coexist with the workflow infrastructure.

4. RainMaker Workflow Framework

RainMaker is a generic workflow framework we have
developed to build interoperable workflow components.
The details of the framework are available elsewhere
[Paulb97]; only a brief outline is presented in this
section.

RainMaker identifies four important abstractions within
the workflow domain. Workflow instances are
considered Sources, or service requesters. Sources
generate Activities, or service requests that are
delegated out. Instances of humans, applications,
organizations, and other entities that handle these
delegated requests are considered Performers, or
service providers. Performers manage units of work
called Tasks, which implement the delegated requests
issued by Sources. It is an important characteristic of
the workflow domain that Tasks can be long-running. A
central feature of RainMaker is that a Task may be a
workflow instance that recursively acts as a Source; this
provides natural support for delegation of subprocesses.

The core RainMaker interfaces that help support this
execution model are:
�

PerformerAgent: An abstract interface that is
implemented by Performers on the network. The
interface provides mechanisms for delegating,
controlling, and querying Tasks on the Performer.

�

SourceAgent: An abstract interface implemented by
Sources on the network. It provides a callback
mechanism for Performers to return the results of
Tasks to Sources.

For the remainder of the paper, the italicized
SourceAgent and PerformerAgent refer to the
RainMaker abstract interfaces. The terms Source and
Performer are used generically to refer to entities (or
objects) that implement the RainMaker SourceAgent
and PerformerAgent interfaces respectively.

The PerformerAgent and SourceAgent interfaces
describe how proprietary Sources and proprietary
Performers can interact with each other (Tables 1 and
2). In essence, the PerformerAgent interface conceals
the internals of how a Performer or service provider
actually performs Tasks in response to the Task
requests. Symmetrically, the SourceAgent interface is a
callback interface implemented to conceal the internal
details of how the Source actually generates Activities,

issues Task requests, and handles responses from
Performers. The interfaces also describe the control
mechanisms by which Tasks can be suspended,
resumed, and aborted; and query mechanisms by which
their status can be tracked. The interaction between
Sources and Performers is shown in Figure 7.

List(TaskID)::listTasks()

TaskStatus::queryTask(TaskID taskid)

ResumeID::resumeTask(TaskID taskid)

SuspendID::suspendTask(TaskID taskid)

AbortID::abortTask(TaskID taskid)

TaskID::createTask(SourceAgent source,
 ActivityID activityid,
 TaskRequest taskreq)

List(TaskDefinition)::listTaskDefinitions()

PerformerAgent interface

Table 1: PerformerAgent interface

Boolean::seekPermissionToStartTask(
 PerformerAgent performer,
 ActivityID activityid)

ForwardedID::forwardedTask(
 PerformerAgent performer,
 ActivityID activityid,
 PerformerAgent newperformer,
 TaskID taskid)

RefusedID::refusedTask(
 PerformerAgent performer,
 ActivityID activityid)

CompletedID::completedTask(
 PerformerAgent performer,
 ActivityID activityid,
 TaskResponse taskresp)

SourceAgent interface

Table 2: SourceAgent interface

create Task

Task complete

Source

SourceAgent

Task
request

Task
response

Activity

Performer

Task

PerformerAgent
Activity Task

Task

Figure 7: Source and Performer Interaction

In addition to the core interfaces, RainMaker also
defines the Worklist interface (Table 3). Worklists are
an important workflow metaphor similar to electronic
mail boxes; they provide a mechanism for human
participants to access work assigned to them by
workflow systems. In the case of RainMaker, Performer
entities that represent human participants on the
network can implement the Worklist interface and allow
participants to view and access the Task Requests sent
to them by various Sources.

void::forwardWorkItem(
 PerformerAgent newperformer,
 TaskID taskid)

void::refusedWorkItem(WorkItemID wid)

void::completedWorkItem(
 WorkItemID wid,
 WorkItemResponse wresp)

WorkItemRequest::getWorkItem(WorkItemID wid)

List(WorkItemDescriptor)::getWorklistIndex()

Worklist interface

Table 3: Worklist interface

The strength of the RainMaker framework lies in its
generalized push model of Task distribution that allows
Tasks to be delegated to Performers independent of
their implementation. This aids the interoperability of
heterogeneous workflow systems and components.
Implementations of the PerformerAgent interface can
represent arbitrary service providers: humans,
applications, roles, organizational units, and workflow
systems. Implementations of the SourceAgent interface
can embody heterogeneous workflow applications
described as rules, as control/data flow graphs, and even
non-workflow applications such as collaborations or
human Sources.

Worklist
Client Applet

RainMan
Directory

Performer

Performers

Builder &
Monitor Applet

WAN

Worklists

Worklist
Client Applet

post

post

post

start

Source

Performer

Performer

Source

Figure 8: RainMan System Design

5. The RainMan System

The RainMan system (see Figure 8) is a distributed
workflow system prototype written in Java using
RainMaker interfaces. It consists of a loosely- coupled
collection of distributed lightweight services required to
deliver workflow functionality to Internet users. It
currently consists of approximately 60 Java classes
developed with Java JDK 1.1.4 and it uses Java’s
Remote Method Invocation (RMI) for transport
between distributed components. The transport has been

designed to be replaceable; it can be reimplemented on
top of any messaging system. RainMan runs on a
TCP/IP token ring network of Wintel machines.

5.1 RainMan User Interface Components

The user interface components of RainMan allow
workflow users to interact with the runtime
environment. The currently available ones are the
Builder, the Worklist Client, and the Administrator, all
implemented as Java applets. This makes any
Java-compliant Web browser a usable client for all
RainMan user interfaces, and has the additional benefit
of making RainMan user interface components portable
and hardware-independent. The Builder and Worklist
Client are described in this section.

5.1.1 RainMan Builder Applet

The RainMan Builder (see Figure 9) in its current
incarnation is a single Java applet that combines three
functions. It is an interactive graphical environment for
specifying workflows as directed, acyclic graphs.
Performers are assigned from the RainMan directory
service view available within the Builder. The
service-specific aspects of an Activity are handled using
the JavaBeans component object model. Workflow
graphs can be saved to and loaded from a workflow
specification repository.

The Builder also acts as a workflow graph interpreter
(Source) and implements the SourceAgent interface. For
an executing workflow, the Builder posts Task requests
to specified Performers. On receiving notification of
results, it inspects the workflow graph and posts the
next set of Task requests. Since the Builder dynamically
interprets the workflow graph, it is possible to change
or refine the ‘downstream’ specification of the
workflow graph even after the workflow has been
started. This is a useful feature that enables the
definition and execution of ad hoc processes, and
distinguishes RainMan from traditional workflow
systems. It allows for dynamic updates to the workflow
graph to deal with emerging scenarios.

This is particularly relevant to decentralized workflow
execution on the Internet, because we expect
Performers to have significant autonomy over their
internal domains and hence be capable of raising
exceptions in response to Task requests from Sources.
In addition, Performers can change their capabilities, as
well as join or leave the network at will. Workflow
systems that cannot be dynamically modified can be
very limiting in such situations.

Support for groups and roles is an important part of
workflow execution. Workflow systems are used to
improve process throughput; one of the ways to achieve
that objective is to assign an Activity to a role at build
time. A role represents a group of ‘fungible’ Performers
(i.e. ‘designer’, ‘tester’, ‘manager’, etc.); the binding of
an Activity to a specific Performer is postponed until
execution. In RainMan, we are experimenting with the
use of special-purpose Performers to manage roles;
section 5.2.3 covers this topic in some more detail.

The choice of a good workflow specification language
remains a matter of considerable debate within the
workflow community. RainMan uses a vanilla workflow
specification language based on directed, acyclic
graphs. It is important to realize that RainMan offers an
excellent infrastructure for deploying a wide range of
specification tools based on heterogeneous languages,
since the details (and potential idiosyncrasies) of a
specification language are completely encapsulated
within a Source implementation and not exposed either
to the Performers or to the RainMan infrastructure. The
clean separation of responsibilities of workflow routing
and Task execution between Sources and Performers
respectively makes RainMan a suitable infrastructure

for plug-and-play operation with heterogeneous Sources
and Performers.

Finally, the Builder also helps users monitor the state of
a workflow execution. It provides visual cues to the
owner or administrator about the global state of a
workflow in execution at a coarse level of granularity.

Even though the three functions of Builder, Source, and
Monitor are currently physically part of the same Java
applet, they remain distinct logical entities in our
workflow architecture. The next version of our
prototype will separate some of these functions,
allowing for features such as disconnected and remote
building and monitoring.

5.1.2 RainMan Worklist Client Applet

The RainMan Worklist Client is a Java applet that
allows users to access their Worklists from within a
Web browser (see Figure 10). A Worklist is a remote
Java object on the network that implements the
PerformerAgent and Worklist interfaces and acts as the
Performer for a human participant. The participant can
use the Worklist Client to view the contents of the
remote Worklist, and selectively download specific
Task requests and perform them.

Figure 9: Builder Applet

Appropriate Task Handlers are automatically launched
to allow the human to interact with Task requests. Each
participant or Performer has a set of capabilities in
RainMan. For example, for humans capable of
document processing, the Worklist Client currently
handles incoming Document_Processing Task requests
via a specialized Task Handler that can locate a
referenced document from a network data store and
launch the necessary local application (word processor)
needed by the human to interact with the document. On
completion, the Task Handler returns the response to its
Worklist, which in turn returns it to the requesting
Source.

Since each Task request received from the Worklist is
handled locally on the client machine, disconnected
operation is handled easily. The client applet needs to
connect to its remote Worklist only for the purposes of
receiving and returning Activities. However, a
connection to the network may still be needed if the
Task needs to reach certain data elements on the

network in the course of its execution, or if the
applications needed to perform it are not locally
available.

The RainMan Worklist Client Applet is significant
because it offers a valuable proof-of-concept that
demonstrates how human performers can receive work
from heterogeneous workflow sources using a single,
unified user interface. Current workflow systems
usually come with proprietary client applications that
provide worklist access by pulling work from their
proprietary servers. In contrast, RainMan requires that
the Worklist Client pull work only from its designated
Worklist on the network, to which Task requests are
pushed from various workflow backends. The RainMan
approach imposes a much lower burden on the Worklist
Client since it no longer has to handle multiple
connections, one with each workflow server it is
receiving work from. In an interoperable workflow
world, an equivalent of the RainMan Worklist Client
Applet could replace proprietary worklist clients.

Figure 10: Worklist Client Applet

Task priorities and deadlines, while not yet
implemented in RainMan, can be supported. Such
constraints, based on convention and agreements
between Sources and Performers, can be specified as
part of the Task request message sent to a Performer. A
Performer unable to meet these constraints may refuse
to service the request. Similarly, a Source may use the
deadline information associated with an Activity to time
out on a Performer that does not respond by the
deadline. However, attempts to generalize the behavior
of arbitrary Sources and Performers with respect to
priorities and deadlines leads to the broader question of
negotiation protocols between Sources and Performers.
Such protocols, while immensely useful, have not been
studied in the context of the RainMaker framework.

5.2 RainMan Runtime Environment

The RainMan runtime environment provides a
collection of distributed services that run on the Internet
infrastructure. The user components described in the
previous section allow workflow users - workflow
designers, participants, and administrators - to interact
with these distributed services on the network. The
services currently available are the Directory Service,
the Worklist Service, and a variety of Performers.

5.2.1 RainMan Directory Service

The RainMan directory service plays the key role of a
trading service in the RainMan system. It contains
information about Performers on the network and their
capabilities. When a Source needs to issue a Task
request to a Performer, it first performs a lookup
operation on the directory service to locate the
appropriate Performer on the network. The directory
service interface also provides methods to register and
unregister Performers. Using the Administrator applet, a
RainMan administrator can manage the directory
service and its contents. Mobile Performers use the
directory service to locate their Worklists as well, thus
enabling true location-independent workflow
participation. For expediency, the RainMan directory
service is currently prototyped as a custom Java
application. We are planning an LDAP-based
[Yeong95] directory service for the next version of the
RainMan prototype.

For widespread workflow deployment on the Internet, it
is necessary for the RainMan directory service to be
distributed. The design of distributed directory services
such as DNS [Mock87] and X.500 [CCITT] can be
used as a guideline for RainMan directory design.
RainMan directories in individual domains (a domain
could be an organization, a geographical location, a

collection of smaller domains, etc.) can be
hierarchically arranged so that Sources can find
Performers across domains. Performers within a domain
would always be registered with their local RainMan
directory. Sources would always lookup their local
RainMan directories for Performers; the local
directories could in turn access other RainMan
directories by traversing the directory hierarchy to
locate matching Performers. A related example is that
of the Corba Trading Service [OMG97]; multiple Corba
Traders can be explicitly linked into a network for
transparent navigation.

5.2.2 RainMan Worklist Service

In workflow systems, worklists are inboxes associated
with humans. In RainMan, a Worklist is a Java object
that implements the RainMaker Worklist and
PerformerAgent interfaces. Therefore, a RainMan
Worklist is a Performer that is owned by and represents
a human on the network (this is not a limiting
assumption - Worklists can easily represent applications
as well). Worklists offer persistent storage of Task
requests posted to humans from Sources.

Client

WAN

Worklist

Source

Source

Performer

Source

Source

get/complete

Figure 11: Reusable Worklists

In RainMan, Worklists are treated as addressable
network objects, and provide a level of separation
between Sources and actual human performers, which
makes asynchronous exchange of requests and
responses between them possible. In other words,
requests can be posted to a Worklist on the network
even when the human performer is not connected, and
the human can access and perform them without
connecting to the Source. Most importantly, in contrast
to traditional workflow systems, a RainMan Worklist is
a first class entity that can be reused by multiple
Sources, thus eliminating the need for explicit,
dedicated connections to workflow servers on the part
of the performer (see Figure 11). This is in sharp
contrast to the architecture shown in Figure 4.

Worklists on the network are managed by an
independent RainMan Worklist Service. At the present
time, the Worklist Service consists of a single Java
application on the network, called a Worklist Server,
that manages a large pool of Worklists. The Worklist
Server is analogous to a POP [Myers96] or an IMAP
[Cris93] server that stores e-mail boxes for multiple
users. The clear separation of the Worklist Service from
the Workflow Server is a novel design point in
RainMan. This is useful because the Worklist Service is
now streamlined to perform a dedicated function in an
autonomous manner, and a Worklist Server can run on
dedicated powerful computational resources that
guarantee performance, availability, security, and
reliability. Furthermore, since Worklists are practically
independent of each other, we expect it to be relatively
easy in this architecture to address scalability in terms
of distributed workflow participants by implementing
the Worklist Service as a distributed service; new
Worklist Servers can be added to the network to host
Worklists as the number of participants increases. We
plan to experiment with these issues in the near future.

5.2.3 RainMan Performers

The Performer abstraction is useful in modeling
humans, software applications, groups and roles,
workflow servers, and entire organizations that perform
Tasks on behalf of a workflow (see Figure 12). As we
have seen, Worklists act as Performers for humans. In
addition, we are building a host of other Performers that
can be used by RainMan workflows. An interesting
Performer class is the SMTPGatewayPerformer
that allows RainMan workflows to send out e-mail over
the Internet. This Performer is an SMTP client written
in Java that implements the PerformerAgent interface. It
can receive SendEmail Task requests from Sources,
connect to a SMTP server, and submit outgoing e-mail
requests. Another implemented Performer class is the
DatabaseQueryPerformer that can receive SQL
queries from a Source and interface with a relational
database at the back end via JDBC. A
PalmPilotPerformer class has also been
implemented that allows Worklist access from a US
Robotics Palm Pilot.

With the growing use of cell phones, pagers, and PDAs,
it is conceivable that a Performer and its human
participant may communicate via other metaphors such
as publish/subscribe (also known as observable/
observer or model/view), and its variations. The
Performer and the human may be co-located on a single
machine, or communicate over distances via a wide
variety of networks (e.g., wireless, infrared, and so on).

In workflows, groups and roles are used to distribute
Task requests to participants according to certain
policies. The commonly supported scenario in current
workflow systems is the case where an Activity is
assigned to all members of a role, say insurance
underwriters, and once a role member assumes
responsibility for the Activity, it is retracted from the
other role members. In RainMan, we take the view that
a wide variety of distribution and retraction policies
may be meaningful, depending on the application. For
example, consider a company that wishes to post a
Request_for_Quotation to each of its suppliers (these
can be modeled as Performers). The company may wish
to get results back from each of these suppliers before it
can proceed with the next step in its workflow
application. Alternately, it may just wish to receive
responses from a ‘majority’ of its suppliers. We are
designing concrete classes for Performers that
implement such Task distribution and retraction policies
based on roles; additional classes can be implemented
based on the needs of specific applications.

Source Human
Performer

Application
Performer

WorkflowServer
Performer

Role Performer
Performer1

Performer2

Figure 12: Heterogeneous Performers

6. Considerations in Workflow

System Design

6.1 Performance

To the best of our knowledge, there are no published
data on the performance and scalability of commercially
available, proprietary workflow systems. However, with
the increasing deployment of these workflow systems,
concerns have been raised about the lack of adequate
performance and scalability in even ‘production’
workflow systems (an industry label for workflow
systems that specifically address the automation of
high-volume, highly repetitive processes such as those
in banks and insurance companies).

Our view is that the Internet will further aggravate the
performance problems of centralized workflow
architectures as they try to interoperate.
WfMC-compliant, monolithic workflow servers are

designed to handle process management, worklist
management, auditing, and directory services
simultaneously for hundreds of workflow instances at
any given time. This architecture may perform
acceptably as long as the number of participants is
limited. However, the performance will degrade rapidly
as the number of participants grows large.

The field of workflow urgently needs meaningful
performance benchmarks that can be used to evaluate
existing systems and their architectures. Until such
benchmarks are established, it is not meaningful to
compare quantitatively RainMan’s performance with
that of traditional architectures. However, we believe
that a compelling qualitative argument in favor of
RainMan can still be made. The RainMan design
dismantles the traditional monolithic server into a
collection of related components. This can help in
eliminating the potential performance bottlenecks of
workflow servers. For example, the clear separation
between process management (Source-side) and
worklist management (Performer-side) will allow each
of these to be optimized independently. As more human
Performers join the RainMan system, additional
Worklist Servers can be pressed into service at different
parts of the network. In a traditional system, additional
worklists would all be added on the central workflow
server, thus burdening the server itself. In contrast, the
RainMan approach has no impact on the Sources and
their performance.

6.2 Failure Handling and Compensations

Much of workflow research in recent years has focused
on the transactional aspects of workflows [Rus94, Al96,
Ley95]. The basic objective is to ensure the
recoverability of workflows, since workflows are
long-running applications that can execute over days,
weeks, or even months. It is fairly well-accepted in
database transactions literature that classical flat ACID
transactions are not viable in the context of
long-running applications. Workflow researchers have
thus borrowed concepts from nested transactions, sagas,
and spheres of compensation to address the needs of
workflows. While many of these ideas remain untested
in commercial systems, they appear to be viable in the
context of commercial workflow systems of today
where the workflow server can exercise significant
control over workflow participants.

The decentralization of the workflows, as proposed in
RainMan, alters the picture significantly. In particular,
if Source workflows are to execute on the Internet, the
autonomy of Performers and their non-proximity to
each other and to the Source itself must be taken as a
given. A Source in this context has no global authority

or jurisdiction over remote, heterogeneous, autonomous
Performers, and has very limited visibility of their
internal resources and mechanisms. In effect, all notions
of compensation must be addressed in terms of
commitments between peers; in effect, the interaction
between a Source and a Performer must be sufficiently
rich to handle failures and provide compensations for
past services as necessary. To use a classical example, a
Source may be a Travel Booking workflow that
interacts with a Performer such as a Hotel Server. The
Hotel Server may provide two basic operations -
reserve and cancel - where cancel is a compensation for
a reserve. Because of a subsequent change in travel
plans, the Source may return to the Performer with a
cancel request on its past reserve request. The Hotel
Server, within the limits of its service contract, would
have to fulfill this request. The idea of long-running
conversations between autonomous network entities
that engage in business transactions has been explored
in the Coyote project [Dan97]. The Coyote view that
meaningful business transactions can occur despite
limited authority of each participant is a useful one for
the Internet; we are exploring how RainMan Sources
and Performers can benefit from the idea of
conversations.

6.3 Decentralized Execution

Traditional workflow systems are based on a model of
centralized workflow execution; the workflow system is
responsible for managing workflow coordination as
well as activity execution by invoking resources or
participants entirely within its scope of authority -
applications, other workflow servers, or human
worklists.

A diametrically opposite model of workflow execution
that can decentralize both workflow coordination and
activity execution has been proposed in the context of
the Arjuna project [Ran97]. This execution model
decentralizes the coordination of a process by installing
‘task controller’ objects in different domains that
coordinate with each other to deliver workflow routing
functionality. Each task controller is a workflow
‘router’ that understands a piece of the overall workflow
graph. This execution model eliminates a central point
of failure in a workflow; moreover, workflows can
proceed even in the face of partial network failures. The
main consequence of the Arjuna approach is that
decentralized workflow control requires participant
domains (i.e. service provider domains) to participate in
workflow routing on behalf of the workflow using a
pre-agreed coordination language (a workflow routing
protocol); this imposes computational burdens on
participant domains that would be unacceptable if the

domains were autonomous. Decentralized control can
also be expensive to manage; it is harder to maintain
global state and make dynamic changes to the workflow
when the workflow script itself is decentralized.

The RainMan execution model strikes a middle ground.
It separates the responsibility of workflow coordination
from activity execution by creating two classes of
entities, Sources and Performers. In effect, while the
coordination of each process remains localized within a
Source object, the actual execution of activities is
decentralized across a network of Performers over
which Sources have very limited control. The leverage
in this model arises from the ability of heterogeneous
Sources to share heterogeneous, autonomous
Performers. This approach respects the autonomy of
each Performer, assumes that the environments in which
Sources and Performers execute will necessarily be
heterogeneous, and makes it easier to keep track of
global state as well as support dynamic workflow
modifications.

6.4 Security Considerations

For workflows to run across wide area networks and
especially across organizations, multiple security
concerns must be addressed. First, an authentication
mechanism must exist to validate the identity of both
Source and Performer domains. This would allow basic
functions such as Worklist access and Performer
invocation to be done in a secure fashion only by
authorized users or components. Second, access control
rights need to be described and enforced in a scalable
fashion to control access to methods on Performers and
Sources. Third, the integrity and privacy of Task
requests and responses exchanged between Sources and
Performers should be maintained. Finally, support for
nonrepudiability and enforcement of terms and
conditions is needed. We are currently exploring these
issues by drawing from the state-of-practice in
distributed systems security. Many of these problems
can be easily alleviated in the case of workflows
between trusted parties by setting up private channels
(Intranets or Extranets) between the participant
individuals and organizations.

7. Conclusions

Our research is directed at designing an Internet
workflow infrastructure that is scalable, flexible, and
interoperable. This is a relevant and important problem
since individuals and organizations are rapidly getting
interconnected. This widespread interconnectivity can

be exploited to enable new kinds of process-based
applications.

The RainMaker framework defines the essential
abstractions of a workflow system and facilitates
interpretable workflow components. Using the
RainMaker framework, we have implemented RainMan,
a distributed, object-oriented workflow system written
in Java. Workflow management, activity distribution,
directory services, and worklist management are all
treated as independent services that work together to
deliver workflow functionality to Internet users. This is
a radical departure from traditional workflow systems
based on monolithic, server-centric architectures. The
RainMan system uses open standards and Web-browser
based user interface components. The system is being
used to experiment with a range of interesting features
such as decentralized workflow execution, dynamic
workflow modification, and disconnected participation.

While RainMan has been designed as an infrastructure
for workflow execution, it offers insights into the
broader problem of designing long-running applications
on a network. In effect, RainMan highlights the
importance of separating the responsibilities of service
requesters (in this case, workflows) from service
providers (in this case, humans, applications,
organizations, etc.) via clean interfaces (i.e.
SourceAgent and PerformerAgent), and assuming that
entities that implement these interfaces are
heterogeneous and autonomous. It offers a peer-to-peer
Task delegation model with a nice recursive behavior; a
Performer that receives Task requests from a Source
can itself act as a Source of Tasks for other Performers
on the network.

8. Acknowledgments

We thank David Hutches and Sastry Duri for various
discussions on workflows and compensations. We also
thank Carl Staelin and the reviewers of this paper for
their valuable comments.

Action Technologies, Action Workflow,
http://www.actiontech.com

[ActWork]

G. Alonso, D. Agrawal, A. El Abbadi, M.
Kamath, R. Gunthor, and C. Mohan,
Advanced Transactional Models in
Workflow Contexts, In Proceedings of
ICDE, 1996.

[Al96]

CCITT/ISO, X.500, The Directory -
Overview of Concepts, Models and
Services, CCITT/ISO IS 9594.

[CCITT]

M. Crispin, IETF RFC 2060, Internet
Message Access Protocol version 4 rev 1,
December 1993

[Cris93]

A. Dan, and F. Parr, The Coyote Approach
to Network Centric Service Applications,
7th International Workshop on High
Performance Transaction Systems,
Asilomar, California, September 14-17,
1997.

[Dan97]

IBM Corporation, FlowMark Workflow,
http://www.software.ibm.com/ad/flowmark

[FlMa]

M. Hamalainen, A. B. Whinston, and S.
Vishik, Electronic Markets for Learning:
Education Brokerages on the Internet,
CACM, Vol. 39, Number 6, June 1996.

[Hama96]

InConcert Inc., InConcert Workflow,
http://www.inconcert.com

[InConc]

F. Leymann, Supporting Business
Transactions via Partial Backward
Recovery in Workflow Management, in
Proceedings of BTW’95, Dresden,
Germany, 1995, Springer Verlag.

[Ley95]

P. Mockapetris, IETF RFC 1034/1035,
Domain Names - Concepts and Facilities,
Implementation and Specification,
November 1987.

[Mock87]

J. Myers, and M. Rose, IETF RFC 1939,
Post Office Protocol - version 3, May
1996.

[Myers96]

OMG Trading Object Service, CORBA
Services: Common Object Services
Specification, Chapter 16, July 1997.

[OMG97]

S. Paul, E. Park, and J. Chaar, Essential
Requirements for a Workflow Standard,
OOPSLA Workshop on Business Objects
Design & Implementation, October 6th,
1997,
http://www.tiac.net/users/jsuth/oopsla97

[Paula97]

S. Paul, E. Park, D. Hutches, and J. Chaar,
RainMaker: Workflow Execution Using
Distributed, Interoperable Components,
IBM Research Report nbr. 21008, October
1997.

[Paulb97]

F. Ranno, S.K. Shrivastava and S.M.
Wheater, A System for Specifying and
Coordinating the Execution of Reliable
Distributed Applications, International
Working Conference on Distributed
Applications and Interoperable Systems
(DAIS’97), September 1997.

[Ran97]

M. Rusinkiewicz and A. Sheth,
Specification and Execution of
Transactional Workflows, In W. Kim,
Editor, Modern Database Systems: The
Object Model, Interopreability and
Beyond, ACM Press, 1994.

[Rus94]

W. Schulze, M. Bohm, and K. Meyer-
Wegener, Services of Workflow Objects
and Workflow Meta-objects in OMG
compliant Environments, OOPSLA
Workshop on Business Objects Design and
Implementation, 1996.

[Schu96]

B. Silver, The BIS Guide to Workflow
Software, BIS Strategy Decisions, One
Longwater Circle, Norwell, MA 02061,
1995.

[Silver95]

FileNet Corporation, FileNet Visual
Workflo, http://www.filenet.com/products/
vwtext.html

[VisFlo]

Workflow Management Coalition,
http://www.aiai.ed.ac.uk/WfMC

[WfMC]

W. Yeong, T. Howes, and S. Kill e, IETF
RFC 1777, Light Weight Directory Access,
March 1995.

[Yeong95]

References

