
	

Copyright	Jeff	Sutherland	1993-2021
 1	

THE	SCRUM	PAPERS:	
NUT,	BOLTS,	AND	ORIGINS	OF	AN	AGILE	FRAMEWORK	

	

	
JEFF	SUTHERLAND		

CO-CREATOR	OF	SCRUM	

	30	MAR	2021,	LINCOLN	MA	

	 	

	

Copyright	Jeff	Sutherland	1993-2021
 2	

	

Dedication	...	5	

Introduction	...	8	

Forward:	Ikujiro	Nonaka	and	The	Scrum	Way	..	11	

Chapter 1: Introduction to Scrum ... 13	

Scrum	Primer	Version	1.2	...	14	

Rolling	out	Agile	at	a	large	Enterprise	...	33	

Capturing	Extreme	Business	Value:	1000%	Annual	Return	on	Investment	in	Scrum	Trainers	43	

Chapter 2: The First Scrum ... 46	

Agile	Development:	Lessons	Learned	from	the	First	Scrum	..	47	

Chapter 3: What is Scrum? The First Papers on the Scrum Development Process ... 54	

Scrum	Development	Process	...	55	

Chapter 4: Getting Started with Scrum .. 79	

Scrum	on	Large	Projects:	Distributed,	Outsourced	Scrum	...	81	

Agile	Can	Scale:	Inventing	and	Reinventing	Scrum	in	Five	Companies	...	83	

PatientKeeper	Scrum:	The	First	Enterprise	Scrum	..	91	

Conclusions	..	92	

Distributed	Scrum:	Agile	Project	Management	with	Outsourced	Development	Teams	93	

Cahpter 5: Distributed, Outsourced Scrum ... 96	

Context	...	99	

Fully	Distributed	Scrum:	Replicating	Local	Productivity	and	Quality	with	Offshore	Teams	111	

Scrum	and	CMMI	Level	5:	The	Magic	Potion	for	Code	Warriors	...	124	

Mature	Agile	with	a	twist	of	CMMI	...	141	

Chapter 6: Scrum Metrics ... 154	

Reporting Scrum Project Progress to Executive Management through Metrics .. 155	

Introduction	...	155	

	

Copyright	Jeff	Sutherland	1993-2021
 3	

Transparency	into	Projects	...	155	

Executive	Dashboard	..	156	

Conclusions	...	163	

Chapter 7: Scrum Tuning ... 164	

Type B Scrum Continuous Flow: Advancing the State of the Art .. 166	

Introduction	...	166	

Background	on	Scrum	..	166	

Improving	Scrum	Implementations	...	168	

Enhancing	Scrum	Implementations	...	169	

Management	Challenges	for	a	Continuous	Flow	Scrum	..	171	

Summary	..	172	

Postscript	...	172	

Future of Scrum: Creating a Scrum Company with a Type C All-At-Once Scrum ... 174	

Abstract	..	174	

1.	Scrum	Evolution	..	174	

2.	Scrum	Evolution	in	Practice	...	176	

2.	The	First	Scrums	–	Team	Scrum	and	Continuous	Flow	Scrum	...	177	

3.	Continuous	Flow	Scrum	...	179	

4.	Type	C	Scrum	..	184	

5.	Conclusions	..	199	

Chapter 8: Case Studies .. 201	

Ssh! We are adding a process… (at Google) ... 202	

1. Introduction .. 202	

2. First agile attempts ... 203	

2.1.	The	guinea	pig	projects	...	204	

	

Copyright	Jeff	Sutherland	1993-2021
 4	

2.2.	The	first	process	steps	...	205	

2.3.	Issues	to	overcome	...	206	

2.4.	Working	with	the	remote	team	...	207	

3.	Adding	agility	–	one	practice	at	a	time	...	207	

4.	Release	experience	...	209	

5.	Feedback	and	next	steps	..	210	

6.	The	second	version	...	211	

7.	Where	are	we	going	from	here	..	213	

8.	Summary	...	214	

Chapter 9:. References .. 215	

Appendix I: ... 221	

Scrum: A Pattern Language for Hyperproductive Software Development .. 221	

How	does	Scrum	Work?	..	222	

The	Patterns	...	224	

Sprint	...	224	

Backlog	...	228	

Scrum	Meetings	..	230	

Conclusion	...	235	

Acknowledgements	...	236	

Index .. 237	

	

Copyright	Jeff	Sutherland	1993-2021
 5	

DEDICATION	
This	book	is	dedicated	to	the	Godfathers	of	Scrum,	Takeuchi	and	Nonaka	[1],	who	gave	Scrum	its	name	and	
helped	created	a	global	transformation	of	software	development.	In	2011	Scrum	is	used	in	over	75%	of	Agile	
implementations	worldwide.	Many	others	have	contributed	to	the	creation	of	Scrum:	

• Jim	Coplien	and	 the	ATT	Bell	Labs	Pasteur	Project1	for	 the	paper	on	 the	most	productive	software	
development	 team	 ever	 documented	 –	 the	 Borland	 Quattro	 Pro	 Project	 [2].	 The	 first	 Scrum	 team	
implemented	the	Scrum	daily	meeting	after	reading	this	paper.	

• Nobel	 Laureates	 Muhammad	 Yunus	 and	 the	 Grameen	 Bank	 for	 originating	 microenterprise	
development	 and	 the	 Accion	 International	 President’s	 Advisory	 Board,	 responsible	 for	 much	 of	
microenterprise	development	in	the	western	hemisphere.	As	a	member	of	the	Accion	advisory	board,	
Jeff	Sutherland	noticed	the	strategy	for	bootstrapping	the	poor	out	of	poverty	is	a	model	for	freeing	
hundreds	of	 thousands	of	 software	developers	 from	developer	abuse	caused	by	poor	management	
practices.	

• Alan	Kay	and	his	team	at	Xerox	Parc	[3]	for	inventing	Smalltalk,	the	mouse,	the	graphical	user	interface,	
the	personal	 computer,	 the	Ethernet,	 and	 the	 laser	printer.	 Listening	 to	his	 insights	 on	 innovation	
inspired	the	first	Scrum	team	to	go	from	“good”	to	“great”	[4].	

	

!!Over 10 years of Pasteur Project research at ATT Bell Labs shows that more than a few roles reduces communication saturation
and cripples performance.
!
The first published paper on the Pasteur approach to document projects and communication patterns coming out of ATT Bell Labs
was: Cain, B.G. and J.O. Coplien. “"!#$%&'()*&+!,-./0/1)%!20$1&**!3$+&%/45!,46/0$4-&47.” Proceedings of the Second Intl Cof
on the Software Process. Berlin 25-26 Feb 1993. !
	

This was followed by over 200 published case studies, the most important of which was read by the first Scrum team at Easel Corp. in
1993 (preprint) and started the Daily Scrum meeting. Coplien, James O. “($0%)4+!8$97:)0&!;0)97*-)4*</.=!"!>&:!?$$@!)7!20$1&**A!

BC)%/7D!)4+!20$+C17/6/7D.” Proceedings of the Fifth Borland International Conference, Orlando FL Jun 1994.!
	

It took over 10 years to publish a full summary of the Pasteur work which led to the software patterns movement in a book: Coplien,
James O., Harrison, Neil B. “E05)4/F)7/$4)%!2)77&04*!$9!"5/%&!8$97:)0&!G&6&%$.-&47.” Pearson Prentice Hall 2005. The book
contains the Borland paper as Chapter 8 and details the specifics of the Pasteur communication flow analysis.!
	

A few years after publication of the previous work, the authors asked Jeff Sutherland to work with them to establish a Scrum Patterns
Group. So the original Pasteur work that led to the Scrum Daily Meeting has another 10 years later led to publication of: Jeff
Sutherland, James O. Coplien, and The Scrum Patterns Group. "810C-!2)77&04*=!H<&!8./0/7!$9!7<&!I)-&J” Pragmatic Bookshelf
2019.!
	

All of this is just a small piece of the massive research project that created Scrum and the Scrum Guide and every serious Scrum
professional should be familiar with the basics.!
	

	

Copyright	Jeff	Sutherland	1993-2021
 6	

• Professor	Rodney	Brooks	 for	 launching	the	startup	 iRobot	 in	space	 leased	from	Jeff	Sutherland.	He	
taught	us	the	subsumption	architecture	[5],	how	to	create	simple	rules	to	produce	highly	intelligent	
performance	from	complex	adaptive	systems.	

• Christopher	Langton	of	Los	Alamos	Labs	and	the	Sante	Fe	Institute	for	coining	the	term	“artificial	life”	
and	showing	that	increasing	degrees	of	freedom	up	to	the	edge	of	chaotic	behavior	accelerated	their	
evolution	[6].	Scrum	feels	“chaotic”	by	intent,	so	as	to	accelerate	software	evolution.	

• The	 French	 object-database	 developers	 working	 near	 the	 MIT	 campus	 at	 Graphael	 (later	 Object	
Databases,	then	Matisse	Software)	for	demonstrating	first	in	Lisp	and	then	in	C++	the	Agile	patterns	of	
pair	 programming,	 radical	 refactoring,	 continuous	 integration,	 common	 ownership	 of	 code,	 world	
class	 user	 interface	 design,	 and	 other	 tips	 and	 tricks	 which	 Kent	 Bent	 used	 to	 create	 eXtreme	
Programming	a	decade	later.	These	were	all	incorporated	into	the	first	Scrum.	

• The	Creative	Initiative	Foundation	for	their	work	with	Silicon	Valley	volunteers	to	help	make	the	world	
a	 better	 place,	 the	 underlying	 motivation	 driving	 the	 founders	 of	 Scrum.	 This	 connected	 the	 Co-
Creators	of	Scrum	with	the	early	systems	thinking	of	MIT	Professor	Peter	Senge	who	later	wrote	“The	
Fifth	Discipline.”	

• Capers	 Jones	 and	 his	 productivity	 experts	 at	 Software	 Productivity	 Research	 who	 analyzed	 and	
reanalyzed	the	output	of	early	Scrum	teams,	as	well	as	many	of	the	software	products	built	with	Scrum	
during	1994-2000	[7].	These	analyses	allowed	us	to	provide	a	money	back	guarantee	that	users	would	
double	productivity	during	the	first	month	using	tools	created	by	the	first	Scrum.	

• The	 first	 Scrum	 team	 –	 John	 Scumniotales	 (Scrum	 Master),	 Don	 Roedner	 (Product	 Owner),	 Jeff	
McKenna	(Senior	Consultant),	Joe	Kinsella	(object-relational	mapping),	Laurel	Ginder	(QA),	and	three	
Danish	developers	-	Grzegorz	Ciepiel,	Bent	Illum,	and	John	Lindgreen.	They	endured	repeated	failure,	
depressing	 analysis	 of	 these	 failures	 in	 front	 of	 their	 technical	 peers	 from	 other	 companies,	 and	
transcendence	of	their	missteps.	They	were	the	first	Scrum	team	to	achieve	the	hyperproductive	state	
for	which	Scrum	was	designed	and	their	product,	Object	Studio,	was	reported	as	industry	leader	by	
computer	 trade	 journals.	 Little	 did	 they	 know	 that	 Scrum	 would	 be	 their	 greatest	 contribution,	
although	Object	Studio	still	lives	on	as	a	successful	product	almost	20	years	later.	

• PatientKeeper,	Inc.,	the	first	company	to	fully	implement	an	“All	at	Once”	or	Type	C	Scrum	involving	
the	entire	company	in	Scrum	practice.	This	innovation	in	process	design	has	been	documented	by	Mary	
and	Tom	Poppendieck	in	their	book	on	Lean	Software	Development	[8].	“I	find	that	the	vast	majority	
of	organizations	are	still	 trying	to	do	too	much	stuff,	and	thus	find	themselves	thrashing.		The	only	
organization	I	know	of	which	has	really	solved	this	is	Patient	Keeper	[9].”	PatientKeeper	was	the	first	
company	to	achieve	a	hyperproductive	revenue	state	driven	by	Scrum	in	2007.	Revenue	quadrupled	
from	13M	to	50M	in	one	year.	

• Jim	Johnson,	CEO	of	the	Standish	Group,	continuously	shared	data	on	over	500,000	project	sets,	each	
with	8-25	projects	over	the	years	since	Scrum	began.	These	data	continually	showed	that	while	Agile	
projects	 (77%	Scrum)	were	more	successful	 than	 traditional	projects,	58%	of	Agile	projects	 fail	 to	
deliver.	The	data	in	the	2018	Chaos	Report	–	Decision	Latency	Theory:	It’s	All	About	the	Interval	[10]	
showed	clearly	that	Scrum	success	was	primarily	driven	by	shortening	decision	time.	

	

Copyright	Jeff	Sutherland	1993-2021
 7	

• Last,	but	not	 least,	many	Scrum	practitioners	experience	 the	quality	without	a	name	 (QWAN)	 -	 a	
phrase	used	by	Christopher	Alexander	 in	his	book	“The	Timeless	Way	of	Building”	[11].	Alexander	
describes	a	certain	quality	that	we	seek,	but	which	cannot	be	named.	This	may	be	the	most	important	
feature	of	Scrum	and	can	only	be	spoken	of	as	a	set	of	core	values	-	openness,	 focus,	commitment,	
courage,	and	respect.	It	could	be	viewed	as	the	“speed	of	trust”	or	one	of	the	sources	of	“ba”	often	seen	
on	Scrum	teams.	Ba	is	the	Japanese	term	for		the	creative	flow	of	innovation	described	by	Takeuchi	and	
Nonaka	[12].	

	

Thanks	to	the	reviewers	of	the	text	who	include	among	many	others:	

• Tom	Poppendieck	

• Henrick	Kniberg	

• Rowan	Bunning	

• Clifford	Thompson	

	

	

Copyright	Jeff	Sutherland	1993-2021
 8	

INTRODUCTION	
Scrum	 derives	 from	 complex	 adaptive	 systems	 theory	 and	 was	 influenced	 by	 best	 practices	 in	 Japanese	
industry,	particularly	by	 lean	development	principles	 [13]	 implemented	at	 companies	 like	Toyota	 [14]	and	
Honda	 [15],	 	 and	 knowledge	management	 strategies	 developed	 by	 Takeuchi	 and	Nonaka	 [12],	 now	 at	 the	
Hitotsubashi	Business	School	in	Japan,	and	Peter	Senge	[16]	at	MIT.	It	was	enhanced	by	the	patterns	movement	
which	evolved	out	of	the	Pasteur	Project	at	ATT	Bell	Labs	led	by	Jim	Coplien.		

Pasteur was a research program at Bell Labs based on sociometric analyses of over 100 organizations
over a ten-year period. It went on in parallel with the development of Scrum, and in fact some of its
findings provided the foundations for some elements of Scrum. One main thrust of the research was
to create, catalog, and analyze sociograms built empirically from data extracted from production teams
world-wide. These sociograms relate to Moreno's techniques for modeling social structures. Personal
Communication (email): James Coplien. 22 Jun 2011	

Scrum	is	not	a	development	method	or	a	formal	process,	rather	it	is	a	compression	algorithm	for	worldwide	
best	 practices	 observed	 in	 over	 50	 years	 of	 software	 development.	 The	 Scrum	 framework	 is	 simple	 to	
implement	and	automatically	unpacks	and	encourages	a	software	development	team	to	deploy	best	practices	
documented	 in	 Organizational	 Patterns	 of	 Agile	 Development.	 Author,	 Jim	 Coplien,	 comments,	 “Scrum	
encapsulates	33	of	the	45	patterns	in	my	book.	It	takes	two	minutes	for	me	to	explain	Scrum	and	over	60	pages	
to	explain	the	patterns.	This	compression	of	best	practices	is	an	amazing	characteristic	of	Scrum.”	

Another	unusual	aspect	of	Scrum	is	that	it	works	in	any	domain.	Jeff	Sutherland	is	a	coach	to	OpenView	Venture	
Partners	and	they	run	their	investment	practice	using	Scrum	with	daily	standup	meetings.	Jeff	coaches	religious	
organizations	who	find	that	Scrum	radically	improves	their	programs,	finances,	and	new	membership.	Scrum	
has	been	used	in	companies	across	business	domains	and	even	for	individual	families	in	planning	weddings,	
family	chores,	and	children’s	schedules.	It	is	a	significant	innovation	in	the	way	to	get	things	done	faster	with	
higher	quality	while	making	the	work	experience	more	rewarding	for	all	participants.	

Scrum	is	used	as	an	Agile	practice	that	delivers	software	to	end	users	faster,	better,	and	cooler	[17,	18].	As	the	
Chief	Product	Owner	at	Yahoo	observed,	coolness	is	a	requirement	at	Google,	Yahoo,	and	most	software	game	
companies.	 Scrum	supports	a	 creative	approach	 to	development	of	 complex	and	 innovative	 systems	and	 it	
scales	to	large	numbers	of	developers.	It	is	used	on	some	of	the	world's	largest	projects	at	companies	like	British	
Telecom	or	Siemens	because	of	high	productivity	with	large	distributed	and	outsourced	development	teams.	It	
is	the	only	software	development	process	that	has	demonstrated	linearly	scalable	when	adding	resources	to	
large	projects	 [19,	20].	 In	a	properly	 implemented	Scrum,	productivity	per	developer	stays	 the	same	when	
adding	resources,	a	phenomena	never	seen	before	in	software	development.	

The	most	profitable	software	product	ever	created	(Google	Adwords	[21])	is	powered	by	Scrum	and	the	most	
productive	large	project	with	over	a	million	lines	of	code	(SirsiDynix	[19])	used	a	distributed,	outsourced	Scrum	
implementation.	CMMI	Level	5	companies	cut	costs	in	half	with	Scrum	while	simultaneously	improving	quality,	
customer	satisfaction,	and	the	developer	experience	(Systematic	Software	Engineering	[20]).	At	the	same	time,	
Scrum	remains	 the	process	of	 choice	 in	 small	 entrepreneurial	 companies	where	 it	has	 its	 roots.	OpenView	
Venture	Partners	 in	Boston	 invests	only	 in	Agile	organizations	and	Scrum	is	 the	core	process	used	 in	 their	
portfolio	companies.	

The	 first	 software	 Scrum	was	 created	 at	 Easel	 Corporation	 [22]	 in	 1993	 based	 on	 extensive	 research	 on	
successful	 projects	worldwide,	 a	 deep	 analysis	 of	 the	 computer	 science	 literature,	 close	 collaboration	with	

	

Copyright	Jeff	Sutherland	1993-2021
 9	

leading	productivity	experts,	and	decades	of	experience	with	advanced	software	technologies.	Jeff	Sutherland	
was	the	Chief	Engineer	for	the	Object	Studio	team	that	defined	Scrum	roles,	hired	the	first	Product	Owner	and	
Scrum	Master,	developed	the	first	Product	Backlog	and	Sprint	Backlog	and	built	the	first	portfolio	of	products	
created	with	Scrum.		

In	1995,	Jeff	introduced	the	Scrum	team	to	Ken	Schwaber,	CEO	of	Advanced	Development	Methods.	Ken	agreed	
that	Scrum	was	a	better	way	to	build	software	than	traditional	methods	used	at	IBM	and	the	big	eight	consulting	
firms	and	worked	with	Jeff	to	formalize	the	Scrum	development	process	at	OOPSLA’95	[23].	In	the	same	year,	
Sutherland	 provided	 support	 for	 development	 of	 eXtreme	 Programming	 [24]	 by	 giving	 Kent	 Beck	 all	
background	information	on	the	creation	of	Scrum	[25]	and	the	results	of	two	years	of	product	development	
with	the	Scrum	process	from	1993-95.	XP	engineering	practices	evolved	along	with	Scrum	and	the	two	leading	
Agile	 development	 processes	work	well	 together.	 Scrum	 and	 XP	 are	 the	most	widely	 used	 Agile	 practices	
worldwide	and	their	creators	are	signatories	of	the	Agile	Manifesto.	

Agile	development	is	used	globally	as	the	best	way	to	develop,	maintain,	and	support	software	systems.	Several	
papers	on	the	early	implementation	of	Scrum	are	of	general	interest.	Later	papers	provide	some	of	the	nuts,	
bolts,	and	best	practices	of	Scrum	implementations.	The	design	and	implementation	of	an	All-at-Once	Scrum	
(Type	C	Scrum)	at	PatientKeeper	to	enable	enterprise	agility	has	been	emulated	by	innovative	companies	in	
many	 countries.	 Case	 studies	 of	 CMMI	 Level	 5	 Scrum	 implementations	 and	 hyperproductive	 distributed,	
outsourced	teams	are	of	particular	interest.	In	this	book,	knowledge	gained	from	these	studies	are	organized	
into	a	single	volume	to	be	readily	accessible.		

Scrum	has	made	its	way	through	the	Pattern	Languages	of	Programming	Design	(PLoP)	process.	Both	Scrum	
and	 eXtreme	 Programming	 were	 affected	 by	 the	 software	 patterns	 movement	 and	 Mike	 Beedle,	 a	 Scrum	
signatory	of	the	Agile	Manifesto,	led	the	effort	to	formally	codify	Scrum	as	an	organizational	pattern.	His	work	
published	in	Volume	4	of	Pattern	Languages	of	Program	Design	[26]	in	included	here.	

Scrum	is	designed	to	add	energy,	focus,	clarity,	and	transparency	to	project	planning	and	implementation.	It	
will	consistently:	

• Increase	speed	of	development	

• Align	individual	and	corporate	objectives	

• Create	a	culture	driven	by	performance	

• Support	shareholder	value	creation	

• Achieve	stable	and	consistent	communication	of	performance	at	all	levels	

• Enhance	individual	development	and	quality	of	life	

The	global	expansion	of	Scrum	in	both	the	largest	and	smallest	software	companies	and	across	all	cultures	is	a	
testimony	to	the	fact	that	Scrum	delivers	on	its	promise.	While	it	is	often	said	that	Scrum	is	not	a	silver	bullet,	
Scrum	can	be	like	a	heat	seeking	missile	when	pointed	in	the	right	direction.	It’s	inspect	and	adapt	approach	to	
continuous	quality	improvement	can	do	serious	damage	to	outmoded	business	practices	and	many	companies	
are	now	transforming	entire	organizations	to	take	advantage	of	Scrum	productivity,	to	delight	customers,	and	
to	make	the	work	environment	better	and	more	fun	for	development	teams.	It’s	focus	on	building	communities	

	

Copyright	Jeff	Sutherland	1993-2021
 10	

of	stakeholders,	encouraging	a	better	life	for	developers,	and	delivering	extreme	business	value	to	customers,	
releases	creativity	and	team	spirit	in	practitioners	and	makes	the	world	a	better	place	to	live	and	work.	

For	every	member	of	the	first	Scrum	team	and	for	many	teams	that	followed,	individual	lives	were	changed	by	
Scrum.	In	Norway	in	2008,	the	managing	director	of	a	Scrum	company	commented	that	annual	revenue	was	
quadrupled	by	Scrum.	She	said	she	was	very	happy	about	the	success	of	the	company	but	the	best	thing	was	
that	the	people	in	the	company	felt	so	good	about	the	way	they	worked	together.	She	felt	deeply	grateful	for	
the	positive	feeling	of	the	people.	So	Scrum	is	as	much	about	the	heart	as	about	the	intellect	and	more	about	
getting	people	to	help	one	another	than	about	project	management.	It	can	focus	the	spirit	of	the	team	and	allow	
them	to	take	their	work	to	a	higher	level	where	everyone	benefits	in	the	process	of	delivering	real	value	to	each	
other,	managers,	customers,	and	end	users.	

Some	people	on	the	first	Scrum	team	were	concerned	they	would	be	searching	for	the	rest	of	their	lives	to	find	
another	team	that	would	provide	a	similar	exhilarating	feeling	of	working	together	to	achieve	great	success.	
They	feared	they	would	never	be	able	to	find	another	opportunity	and	the	first	Scrum	team	would	be	the	only	
work	experience	in	their	lives	that	deeply	satisfied	them.	They	cried	in	my	office	about	this	when	the	first	Scrum	
company	was	acquired	by	a	larger	company	and	moved	to	a	new	location.	Yet	because	of	their	generosity	of	
spirit,	their	gift	of	blood,	sweat,	and	tears,	and	the	careful	shepherding	of	Scrum	by	Ken	Schwaber,	they	can	
relax.	 Scrum	 teams	 are	 found	 everywhere,	 from	 Silicon	 Valley	 to	 Katmandu.	 All	 people	 now	 have	 the	
opportunity	to	experience	the	benefits	of	Scrum.	

Jeff	Sutherland	-	Lincon,	MA	USA,	2021	

	 	

	

Copyright	Jeff	Sutherland	1993-2021
 11	

FORWARD:	IKUJIRO	NONAKA	AND	THE	SCRUM	WAY	
by	Jeff	Sutherland,	Paris,	2011	

In	 1993,	 the	 first	 Scrum	 team	 read	 “The	New	 	New	Product	Development	Game”	 in	 the	Harvard	Business	
Review.	The	authors,	Takeuchi	and	Nonaka,	were	visiting	professors	at	Harvard	when	they	published	this	paper	
in	1986.		They	described	the	best	teams	they	had	seen	around	the	world	as	self-organizing	teams	characterized	
by	autonomy,	transcendence,	and	cross-fertilization.	That	is	the	team	members	were	totally	responsible,	put	
the	team	first,	and	everyone	learned	how	to	do	everyone	else’s	job.	The	team	leader	had	a	facilitative	style,	
helped	the	team	translate	outrageous	senior	management	goals	into	practical	implementation,	and	became	a	
catalyst	for	innovation	and	organizational	transformation.	

Our	first	Scrum	team	had	studied	hundreds	of	papers	and	talked	with	many	of	the	leading	experts	on	software	
development	 and	 product	 management.	 The	 team	 had	 an	 outrageous	 goal	 ,to	 replace	 all	 the	 company’s	
products	with	a	brand	new	product	in	less	than	6	months.	No	one	could	tell	them	what	to	do	because	no	one	
knew	what	the	product	should	be.	It	would	be	different	and	it	would	be	ground	breaking	and	we	would	figure	
it	out.	Nonaka’s	work	was	a	life	raft	in	a	stormy	ocean	and	we	all	grabbed	it	and	held	on.	

Seventeen	years	later	in	2011,	I	met	Nonaka	for	the	first	time	in	Tokyo.	He	is	a	small	man,	a	yoda-like	figure	
who	does	not	use	a	computer.	Early	in	his	career	he	worked	with	the	military	to	figure	out	why	the	Japanese	
lost	World	War	II.	He	is	now	one	of	the	most	influential	management	gurus	on	the	planet	and	some	say	he	has	
replaced	Peter	Drucker	as	the	leading	thinker	in	management	innovation.	His	latest	book,	“Managing	Flow:	A	
Process	Theory	of	the	Knowledge-Based	Firm”	is	based	on	a	deep	understanding	of	philosophy	and	human	
psychology.	In	it	he	elucidates	the	magic	through	which	great	products	arise	from	the	dynamic	interaction	of	a	
team.	

His	primary	concern	in	2011	is	to	help	Japan	through	its	third	great	transition.	The	first	was	when	the	Shogun	
turned	 Japan	 over	 to	 the	 Emperor	 because	 once	 Admiral	 Perry	 showed	 up	with	 guns,	 he	 could	 no	 longer	
maintain	the	lengthy	effort	to	keep	Japan	isolated	and	impervious	to	western	influences.	The	second	was	the	
aftermath	of	Hiroshima	and	the	rebuilding	of	Japan.	Now	Japan	has	the	highest	per	capita	debt	in	the	world.	
The	growth	of	their	economy	is	one	of	the	lowest	in	Asia	and	the	Chinese	and	the	South	Koreans	are	dramatic	
economic	threats.	The	people	all	say	there	needs	to	be	and	there	will	be	earth-shaking	changes	in	Japan,	and	
soon.	

Nonaka	knew	nothing	about	software	Scrum	until	about	a	year	ago	when	an	emerging	Agile	community	in	Japan	
attended	Agile	2009.	Kawaguchi	Yasunobu	and	Kenji	Hiranabe	organized	the	first	Agile	conference	in	Japan	
and	asked	Nonaka	to	come	and	talk	about	Scrum.	For	their	second	conference,	they	invited	me	to	meet	Nonaka.	
who	was	surprised	by	Scrum	and	found	it	different	from	his	meetings	with	the	leading	management	and	lean	
gurus.	He	said	he	felt	humility	from	Scrum	rather	than	the	arrogance	he	had	experienced	elsewhere.	He	was	so	
happy	 that	 his	 ideas	 that	 developed	 in	 a	 university	 setting	 had	 achieved	 such	 widespread	 practical	
implementation	in	the	business	world.	He	feels	deeply	that	Japan	needs	radical	innovation	in	this	critical	time	
for	his	country	and	that	Scrum	can	help.	At	dinner	he	said	quietly,	“Help	us	save	Japan.”	

I	was	deeply	affected	by	Nonaka	and	by	the	dozen	or	so	Japanese	Scrum	Masters	who	all	want	to	become	Scrum	
Trainers	and	are	ready	to	do	anything	to	achieve	it,	including	learning	English	so	they	can	appear	before	the	
review	committee	in	America.	During	our	product	owner	course,	they	kept	asking	me	to	draw	a	kanji	character,	
repeatedly	giving	me	parchment,	a	calligraphy	pen,	and	an	ink	bottle.	They	said	it	was	important	that	I	practice.	
Not	knowing	what	 the	character	meant,	 I	went	along	with	 them.	Then	 late	at	night	at	dinner	 in	a	bar	after	

	

Copyright	Jeff	Sutherland	1993-2021
 12	

everyone	had	half	a	dozen	beers,	they	said,	“Now	is	the	time.	You	must	draw	the	Kanji	character	for	real	now.”	
Though	I	drew	a	poor	imitation	of	the	excellent	example	they	gave	me	to	follow,	they	were	quite	happy	with	it.	
They	said	at	last,	“this	means	“The	Scrum	Way”	and	at	the	bottom	is	your	signature.”	

Suddenly	all	my	years	of	training	in	Aikido	dojos	came	back	to	me.		Master	Ueshiba,	the	founder,	had	drawn	the	
kanji	for	“The	Aikido	Way”	and	I	had	studied	under	some	of	his	direct	disciples.	The	Way	is	a	way	of	doing,	a	
way	of	being,	it	is	a	way	of	life.	And	it	requires	unending	practice	in	a	community	of	practitioners,	with	relentless	
focus	 on	 continuous	 improvement.	 The	 “Way”	 kanji	 characters	 appear	 on	 the	 t-shirts,	 the	 kimonos,	 the	
publications,	and	doorways	to	the	halls	of	those	who	practice	the	“Way.”	I	saw	Scrum	as	if	for	the	first	time	
through	the	eyes	of	the	Japanese	when	drawing	the	icon	of	“The	Scrum	Way”	and	was	astounded!	

	 	

	

Copyright	Jeff	Sutherland	1993-2021
 13	

CHAPTER	1:	INTRODUCTION	TO	SCRUM	
The	Scrum	Foundation	provided	an	introduction	to	Scrum	first	developed	at	Yahoo	and	later	updated	by	Pete	
Deemer	and	Gabrielle	Benefield	 for	their	 independent	consulting	practices.	Tobias	Meyer	asked	Jeff	 to	help	
educate	engineers	at	Yahoo	on	Scrum	in	November,	2005.	Vice	President	of	Development,	Pete	Deemer	set	up	
a	Yahoo	Senior	Management	meeting	the	following	month	for	a	Scrum	briefing	at	an	evening	dinner	in	Palo	
Alto.	By	the	end	of	the	dinner,	Yahoo	management	decided	to	roll	out	Scrum	companywide.	They	felt	Scrum	fit	
the	Yahoo	style	of	development	used	in	their	early	years	as	a	startup	company	while	giving	them	a	structure	
that	would	support	a	global	organization.	

Pete	recruited	Gabrielle	Benefield	in	2006	to	lead	the	Scrum	rollout	at	Yahoo	in	the	U.S.	and	then	moved	to	
India	to	become	Yahoo	Chief	Product	Officer	and	train	the	Indian	teams	in	Scrum.	Together,	they	have	written	
their	introduction	to	Scrum	and	provided	some	interesting	survey	data.	In	2007,	Gabrielle	published	updated	
survey	data	from	almost	200	Scrum	teams	at	Yahoo.	These	data	show	overwhelming	support	for	Scrum	as	a	
“better,	faster,	cooler”	method	for	building	software.	It	also	shows	an	annual	Return	on	Investment	(ROI)	of	
1000%	 for	 investment	 in	 Scrum	 trainers.	 This	was	 the	 estimated	ROI	 on	 Scrum	 training	proposed	 to	Pete	
Deemer	in	2005	by	Jeff	Sutherland.	

Jeff,	Pete,	and	Gabrielle,	along	with	Jens	Ostergaard	from	Denmark	joined	forces	to	create	the	Scrum	Foundation	
(formerly	 Scrum	 Training	 Institute)	 in	 2008.	 This	 allows	 them	 to	 provide	 global	 training,	 consulting,	 and	
coaching	 services	 to	 those	 companies	 implementing	Scrum.	The	Scrum	Foundation	expanded	 to	 include	as	
partners	many	of	the	leading	Scrum	companies,	Scrum		trainers	and	Scrum	coaches	worldwide.		

In	recent	years,	the	founders	focused	on	their	own	companies,	dissolved	the	Scrum	Foundation	as	a	company,	
and	Jens	Ostergaard	now	owns	the	name	Scrum	Foundation.	Pete	Deemer	also	updated	this	Primer,	added	Craig	
Larman	and	Bas	Vodde	as	co-authors,	and	maintains	the	updated	version	at	GoodAgile.com.	

	

	

Copyright	Jeff	Sutherland	1993-2021
 14	

SCRUM	PRIMER	VERSION	1.2	
	

Pete	Deemer	and	Gabrielle	Benefield,	Scrum	Foundation,	2010	

A	note	to	readers:	There	are	many	concise	descriptions	of	Scrum	available	online,	and	this	primer	aims	to	
provide	the	next	level	of	detail	on	the	practices.	It	is	not	intended	as	the	final	step	in	a	Scrum	education;	teams	
that	 are	 considering	 adopting	 Scrum	 are	 advised	 to	 equip	 themselves	 with	 Ken	 Schwaber’s	 Agile	 Project	
Management	with	Scrum	or	Agile	Software	Development	with	Scrum,	and	take	advantage	of	the	many	excellent	
Scrum	training	and	coaching	options	that	are	available.	Our	thanks	go	to	Ken	Schwaber,	Dr.	Jeff	Sutherland,	and	
Mike	Cohn	for	their	generous	input.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 15	

	

TRADITIONAL	SOFTWARE	DEVELOPMENT
The	traditional	way	to	build	software,	used	by	companies	big	and	small,	was	a	sequential	life	cycle	commonly	
known	as	“the	waterfall.”	There	are	many	variants	(such	as	the	V-Model),	but	it	typically	begins	with	a	detailed	
planning	phase,	where	the	end	product	is	carefully	thought	through,	designed,	and	documented	in	great	detail.	
The	tasks	necessary	to	execute	the	design	are	determined,	and	the	work	is	organized	using	tools	such	as	Gantt	
charts	and	applications	such	as	Microsoft	Project.	The	team	arrives	at	an	estimate	of	how	long	the	development	
will	take	by	adding	up	detailed	estimates	of	the	individual	steps	involved.	Once	stakeholders	have	thoroughly	
reviewed	 the	 plan	 and	 provided	 their	 approvals,	 the	 team	 starts	 to	work.	 Team	members	 complete	 their	
specialized	portion	of	the	work,	and	then	hand	it	off	 to	others	 in	production-line	fashion.	Once	the	work	is	
complete,	it	is	delivered	to	a	testing	organization	(some	call	this	Quality	Assurance),	which	completes	testing	
prior	to	the	product	reaching	the	customer.	Throughout	the	process,	strict	controls	are	placed	on	deviations	
from	the	plan	to	ensure	that	what	is	produced	is	actually	what	was	designed.	

This	approach	has	strengths	and	weaknesses.	Its	great	strength	is	that	it	is	supremely	logical	–	think	before	
you	build,	write	it	all	down,	follow	a	plan,	and	keep	everything	as	organized	as	possible.	It	has	just	one	great	
weakness:	humans	are	involved.	

For	example,	this	approach	requires	that	the	good	ideas	all	come	at	the	beginning	of	the	release	cycle,	where	
they	can	be	incorporated	into	the	plan.	But	as	we	all	know,	good	ideas	appear	throughout	the	process	–	in	the	
beginning,	the	middle,	and	sometimes	even	the	day	before	launch,	and	a	process	that	does	not	permit	change	
will	stifle	this	innovation.	With	the	waterfall,	a	great	idea	late	in	the	release	cycle	is	not	a	gift,	it’s	a	threat.	

The	 waterfall	 approach	 also	 places	 a	 great	 emphasis	 on	 writing	 things	 down	 as	 a	 primary	 method	 for	
communicating	critical	information.	The	very	reasonable	assumption	is	that	if	I	can	write	down	on	paper	as	
much	as	possible	of	what’s	in	my	head,	it	will	more	reliably	make	it	into	the	head	of	everyone	else	on	the	team;	
plus,	if	it’s	on	paper,	there	is	tangible	proof	that	I’ve	done	my	job.	The	reality,	though,	is	that	most	of	the	time	
these	 highly	 detailed	 50-page	 requirements	 documents	 just	 do	 not	 get	 read.	When	 they	 do	 get	 read,	 the	
misunderstandings	are	often	compounded.	A	written	document	is	an	incomplete	picture	of	my	ideas;	when	
you	read	it,	you	create	another	abstraction,	which	is	now	two	steps	away	from	what	I	think	I	meant	to	say at	
that	time.	It	is	no	surprise	that	serious	misunderstandings	occur.	

Something	else	that	happens	when	you	have	humans	involved	is	the	hands-on	“aha”	moment	–	the	first	time	
that	you	actually	use	the	working	product.	You	immediately	think	of	20	ways	you	could	have	made	it	better.	
Unfortunately,	these	very	valuable	insights	often	come	at	the	end	of	the	release	cycle,	when	changes	are	most	
difficult	and	disruptive	–	in	other	words,	when	doing	the	right	thing	is	most	expensive,	at	least	when	using	a	
traditional	method.	

Humans	are	not	able	to	predict	the	future.	For	example,	your	competition	makes	an	announcement	that	was	
not	expected.	Unanticipated	technical	problems	crop	up	that	force	a	change	in	direction.	Furthermore,	people	
are	particularly	bad	at	planning	uncertain	things	far	into	the	future	–	guessing	today	how	you	will	be	spending	
your	week	eight	months	 from	now	 is	 something	of	a	 fantasy.	 It	has	been	 the	downfall	of	many	a	 carefully	
constructed	Gantt	chart.	

In	 addition,	 a	 sequential	 life	 cycle	 tends	 to	 foster	 an	 adversarial	 relationship	 between	 the	 people	 that	 are	
handing	work	off	from	one	to	the	next.	“He’s	asking	me	to	build	something	that’s	not	in	the	specification.”	“She’s	
changing	her	mind.”	“I	can’t	be	held	responsible	for	something	I	don’t	control.”	And	this	gets	us	to	another	
observation	about	sequential	development	–	it	is	not	much	fun.	The	waterfall	model	is	a	cause	of	great	misery	
for	the	people	who	build	products.	The	resulting	products	fall	well	short	of	expressing	the	creativity,	skill,	and	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 16	

	

passion	of	their	creators.	People	are	not	robots,	and	a	process	that	requires	them	to	act	like	robots	results	in	
unhappiness.	

A	rigid,	change-resistant	process	produces	mediocre	products.	Customers	may	get	what	they	first	ask	for	(at	
least	two	translation	steps	removed),	but	is	it	what	they	really	want	once	they	see	the	product?	By	gathering	
all	the	requirements	up	front	and	having	them	set	in	stone,	the	product	is	condemned	to	be	only	as	good	as	the	
initial	idea,	instead	of	being	the	best	once	people	have	learned	or	discovered	new	things.	

Many	practitioners	of	a	sequential	life	cycle	experience	these	shortcomings	again	and	again.	But,	it	seems	so	
supremely	logical	that	the	common	reaction	is	to	turn	inward:	“If	only	we	did	it	better,	it	would	work”	–	if	we	
just	planned	more,	documented	more,	resisted	change	more,	everything	would	work	smoothly.	Unfortunately,	
many	teams	find	just	the	opposite:	the	harder	they	try,	the	worse	it	gets!	There	are	also	management	teams	
that	have	invested	their	reputation	–	and	many	resources	–	in	a	waterfall	model;	changing	to	a	fundamentally	
different	model	is	an	apparent	admission	of	having	made	a	mistake.	And	Scrum	is	fundamentally	different...	

AGILE	DEVELOPMENT	AND	SCRUM	
The	agile	family	of	development	methods	were	born	out	of	a	belief	that	an	approach	more	grounded	in	human	
reality	–	and	the	product	development	reality	of	learning,	innovation,	and	change	–	would	yield	better	results.	
Agile	principles	emphasize	building	working	software	that	people	can	get	hands	on	quickly,	versus	spending	a	
lot	of	time	writing	specifications	up	front.	Agile	development	focuses	on	cross-functional	teams	empowered	to	
make	decisions,	versus	big	hierarchies	and	compartmentalization	by	function.	And	it	focuses	on	rapid	iteration,	
with	continuous	customer	input	along	the	way.	Often	when	people	learn	about	agile	development	or	Scrum,	
there’s	a	glimmer	of	recognition	–	it	sounds	a	lot	like	back	in	the	start-up	days,	when	we	“just	did	it.”		

By	far	the	most	popular	agile	method	is	Scrum.	It	was	strongly	influenced	by	a	1986	Harvard	Business	Review	
article	 on	 the	 practices	 associated	 with	 successful	 product	 development	 groups;	 in	 this	 paper	 the	 terms	
“Rugby”	 	 and	 “Scrum”	were	 introduced,	which	 later	morphed	 into	 “Scrum”	 in	Wicked	 Problems,	 Righteous	
Solutions	 (1991,	DeGrace	and	Stahl)	relating	successful	development	to	 the	game	of	Rugby	 in	which	a	self-
organizing	team	moves	together	down	the	field	of	product	development.	It	was	then	formalized	in	1995	by	Ken	
Schwaber	 and	 Dr.	 Jeff	 Sutherland.	 Scrum	 is	 	 now	 	 used	 by	 companies	 large	 and	 small,	 including	 Yahoo!,	
Microsoft,	Google,	Lockheed	Martin,	Motorola,	SAP,	Cisco,	GE,	CapitalOne	and	the	US	Federal	Reserve.	Many	
teams	using	Scrum	report	 significant	 improvements,	 and	 in	 some	cases	 complete	 transformations,	 in	both	
productivity	and	morale.	For	product	developers	–	many	of	whom	have	been	burned	by	the	“management	fad	
of	the	month	club”	–	this	is	significant.	Scrum	is	simple	and	powerful.	

SCRUM	SUMMARY	
Scrum	 is	 an	 iterative,	 incremental	 framework	 for	 projects	 and	 product	 or	 application	 development.	 It	
structures	development	in	cycles	of	work	called	Sprints.	These	iterations	are	no	more	than	one	month	each,	
and	 take	place	one	after	 the	other	without	pause.	The	Sprints	are	 timeboxed	–	 they	end	on	a	 specific	date	
whether	the	work	has	been	completed	or	not,	and	are	never	extended.	At	the	beginning	of	each	Sprint,	a	cross-
functional	team	selects	items	(customer	requirements)	from	a	prioritized	list.	The	team	commits	to	complete	
the	items	by	the	end	of	the	Sprint.	 	During	the	Sprint,	 the	chosen	items	do	not	change.	Every	day	the	team	
gathers	briefly	to	inspect	its	progress,	and	adjust	the	next	steps	needed	to	complete	the	work	remaining.	At	the	
end	of	the	Sprint,	the	team	reviews	the	Sprint	with	stakeholders,	and	demonstrates	what	it	has	built.	People	
obtain	feedback	that	can	be	incorporated	in	the	next	Sprint.	Scrum	emphasizes	working	product	at	the	end	of	
the	Sprint	 that	 is	really	“done”;	 in	 the	case	of	software,	 this	means	code	that	 is	 integrated,	 fully	 tested	and	
potentially	shippable.	Key	roles,	artifacts,	and	events	are	summarized	in	Figure	1.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 17	

	

	

A	major	theme	in	Scrum	is	“inspect	and	adapt.”	Since	development	inevitably	involves	learning,	innovation,	
and	surprises,	Scrum	emphasizes	taking	a	short	step	of	development,	inspecting	both	the	resulting	product	
and	the	efficacy	of	current	practices,	and	then	adapting	the	product	goals	and	process	practices.	Repeat	forever.	

FIGURE	1.	SCRUM	

SCRUM	ROLES	
In	Scrum,	there	are	three	roles:	The	Product	Owner,	The	Team,	and	The	Scrum	Master.	 	Together	these	are	
known	as	The	Scrum	Team.		The	Product	Owner	is	responsible	for	maximizing	return	on	investment	(ROI)	by	
identifying	product	features,	translating	these	into	a	prioritized	list,	deciding	which	should	be	at	the	top	of	the	
list	for	the	next	Sprint,	and	continually	re-prioritizing	and	refining	the	list.	The	Product	Owner	has	profit	and	
loss	responsibility	for	the	product,	assuming	it	is	a	commercial	product.	In	the	case	of	an	internal	application,	
the	Product	Owner	is	not	responsible	for	ROI	in	the	sense	of	a	commercial	product	(that	will	generate	revenue),	
but	they	are	still	responsible	for	maximizing	ROI	in	the	sense	of	choosing	–	each	Sprint	–	the	highest-business-
value	lowest-cost	items.	In	practice,	‘value’	is	a	fuzzy	term	and	prioritization	may	be	influenced	by	the	desire	
to	satisfy	key	customers,	alignment	with	strategic	objectives,	attacking	risks,	improving,	and	other	factors.		In	
some	cases,	the	Product	Owner	and	the	customer	are	the	same	person;	this	is	common	for	internal	applications.	
In	others,	the	customer	might	be	millions	of	people	with	a	variety	of	needs,	in	which	case	the	Product	Owner	
role	is	similar	to	the	Product	Manager	or	Product	Marketing	Manager	position	in	many	product	organizations.	
However,	the	Product	Owner	is	somewhat	different	than	a	traditional	Product	Manager	because	they	actively	
and	frequently	interact	with	the	Team,	personally	offering	the	priorities	and	reviewing	the	results	each	two-	
or	four-week	iteration,	rather	than	delegating	development	decisions	to	a	project	manager.	It	is	important	to	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 18	

	

note	that	in	Scrum	there	is	one	and	only	one	person	who	serves	as	–	and	has	the	final	authority	of	–	Product	
Owner,	and	he	or	she	is	responsible	for	the	value	of	the	work.	

The	Team	builds	the	product	that	the	Product	Owner	indicates:	the	application	or	website,	for	example.	The	
Team	in	Scrum	is	“cross-functional”	–	it	includes	all	the	expertise	necessary	to	deliver	the	potentially	shippable	
product	each	Sprint	–	and	 it	 is	 “self-organizing”	(self-managing),	with	a	very	high	degree	of	autonomy	and	
accountability.	The	Team	decides	what	to	commit	to,	and	how	best	to	accomplish	that	commitment;	in	Scrum	
lore,	the	Team	is	known	as	“Pigs”	and	everyone	else	in	the	organization	are	“Chickens”	(which	comes	from	a	
joke	about	a	pig	and	a	chicken	deciding	to	open	a	restaurant	called	“Ham	and	Eggs,”	and	the	pig	having	second	
thoughts	because	“he	would	be	truly	committed,	but	the	chicken	would	only	be	involved”).	

The	Team	in	Scrum	is	seven	plus	or	minus	two	people,	and	for	a	software	product	the	Team	might	include	
people	 with	 skills	 in	 analysis,	 development,	 testing,	 interface	 design,	 database	 design,	 architecture,	
documentation,	and	so	on.	The	Team	develops	the	product	and	provides	ideas	to	the	Product	Owner	about	how	
to	make	 the	product	 great.	 In	 Scrum	 the	Teams	are	most	productive	 and	effective	 if	 all	members	 are	100	
percent	dedicated	to	the	work	for	one	product	during	the	Sprint;	avoid	multitasking	across	multiple	products	
or	 projects.	 Stable	 teams	 are	 associated	 with	 higher	 productivity,	 so	 avoid	 changing	 Team	 members.	
Application	groups	with	many	people	are	organized	 into	multiple	Scrum	Teams,	each	 focused	on	different	
features	 for	 the	 product,	 with	 close	 coordination	 of	 their	 efforts.	 Since	 one	 team	 often	 does	 all	 the	work	
(planning,	analysis,	programming,	and	testing)	for	a	complete	customer-centric	feature,	Teams	are	also	known	
as	feature	teams.	

The	Scrum	Master	helps	 the	product	group	 learn	and	apply	Scrum	to	achieve	business	value.	 	The	Scrum	
Master	does	whatever	is	in	their	power	to	help	the	Team	and	Product	Owner	be	successful.	The	Scrum	Master	
is	not	the	manager	of	the	Team	or	a	project	manager;	instead,	the	Scrum	Master	serves	the	Team,	protects	them	
from	outside	 interference,	and	educates	and	guides	 the	Product	Owner	and	 the	Team	 in	 the	skillful	use	of	
Scrum.	The	Scrum	Master	makes	 sure	everyone	 (including	 the	Product	Owner,	 and	 those	 in	management)	
understands	and	follows	the	practices	of	Scrum,	and	they	help	lead	the	organization	through	the	often	difficult	
change	required	to	achieve	success	with	agile	development.	 	Since	Scrum	makes	visible	many	impediments	
and	threats	to	the	Team’s	and	Product	Owner’s	effectiveness,	it	is	important	to	have	an	engaged	Scrum	Master	
working	 energetically	 to	 help	 resolve	 those	 issues,	 or	 the	 Team	 or	 Product	 Owner	will	 find	 it	 difficult	 to	
succeed.	 	There	should	be	a	dedicated	full-time	Scrum	Master,	although	a	smaller	Team	might	have	a	team	
member	play	this	role	(carrying	a	lighter	load	of	regular	work	when	they	do	so).	Great	Scrum	Masters	can	come	
from	any	background	or	discipline:	Engineering,	Design,	Testing,	Product	Management,	Project	Management,	
or	Quality	Management.		

The	Scrum	Master	and	the	Product	Owner	cannot	be	the	same	individual;	at	times,	the	Scrum	Master	may	be	
called	upon	to	push	back	on	the	Product	Owner	(for	example,	if	they	try	to	introduce	new	deliverables	in	the	
middle	of	a	Sprint).	And	unlike	a	project	manager,	the	Scrum	Master	does	not	tell	people	what	to	do	or	assign	
tasks	–	they	facilitate	the	process,	supporting	the	Team	as	it	organizes	and	manages	itself.	If	the	Scrum	Master	
was	previously	in	a	position	managing	the	Team,	they	will	need	to	significantly	change	their	mindset	and	style	
of	interaction	for	the	Team	to	be	successful	with	Scrum.	

Note	 there	 is	 no	 role	 of	 project	 manager	 in	 Scrum.	 	 This	 is	 because	 none	 is	 needed;	 the	 traditional	
responsibilities	 of	 a	 project	manager	 have	 been	 divided	 up	 and	 reassigned	 among	 the	 three	 Scrum	 roles.		
Sometimes	an	(ex-)project	manager	can	step	 into	 the	role	of	Scrum	Master,	but	 this	has	a	mixed	record	of	
success	–	there	is	a	fundamental	difference	between	the	two	roles,	both	in	day-to-day	responsibilities	and	in	
the	mindset	required	to	be	successful.			

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 19	

	

	

In	addition	to	these	three	roles,	there	are	other	contributors	to	the	success	of	the	product,	including	functional	
managers	(for	example,	an	engineering	manager).	While	their	role	changes	in	Scrum,	they	remain	valuable.	For	
example:		

• they	support	the	Team	by	respecting	the	rules	and	spirit	of	Scrum	
• they	help	remove	impediments	that	the	Team	and	Product	Owner	identify	
• they	make	their	expertise	and	experience	available	

In	Scrum,	these	individuals	replace	the	time	they	previously	spent	playing	the	role	of	“nanny”	(assigning	tasks,	
getting	status	reports,	and	other	forms	of	micromanagement)	with	time	as	“guru”	and	“servant”	of	the	Team	
(mentoring,	coaching,	helping	remove	obstacles,	helping	problem-solve,	providing	creative	input,	and	guiding	
the	skills	development	of	Team	members).	In	this	shift,	managers	may	need	to	change	their	management	style;	
for	example,	using	Socratic	questioning	to	help	the	Team	discover	the	solution	to	a	problem,	rather	than	simply	
deciding	a	solution	and	assigning	it	to	the	Team.	

STARTING	SCRUM	
The	first	step	in	Scrum	is	for	the	Product	Owner	to	articulate	the	product	vision.	Eventually,	this	evolves	into	a	
refined	and	prioritized	list	of	features	called	the	Product	Backlog.	This	backlog	exists	(and	evolves)	over	the	
lifetime	of	the	product;	it	is	the	product	road	map	(Figure	2).	At	any	point,	the	Product	Backlog	is	the	single,	
definitive	view	of	“everything	that	could	be	done	by	the	Team	ever,	in	order	of	priority”.	Only	a	single	Product	
Backlog	exists;	this	means	the	Product	Owner	is	required	to	make	prioritization	decisions	across	the	entire	
spectrum,	representing	the	interest	of	stakeholders	and	influenced	by	the	team.	

	

FIGURE	2.	THE	PRODUCT	BACKLOG	

The	Product	Backlog	includes	a	variety	of	items,	primarily	new	customer	features	(“enable	all	users	to	place	
book	in	shopping	cart”),	but	also	engineering	improvement	goals	(“rework	the	transaction	processing	module	
to	 make	 it	 scalable”),	 exploratory	 or	 research	 work	 (“investigate	 solutions	 for	 speeding	 up	 credit	 card	
validation”),	and,	possibly,	known	defects	(“diagnose	and	fix	the	order	processing	script	errors”),	if	there	are	
only	a	few	problems.	(A	system	with	many	defects	usually	has	a	separate	defect	tracking	system.)	The	Product	
Backlog	can	be	articulated	in	any	way	that	is	clear	and	sustainable,	though	either	Use	Cases	or	“user	stories”
are	often	used	to	describe	the	Product	Backlog	items	in	terms	of	their	value	to	the	end	user	of	the	product.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 20	

	

The	subset	of	the	Product	Backlog	that	is	intended	for	the	current	release	is	known	as	the	Release	Backlog,	
and	in	general,	this	portion	is	the	primary	focus	of	the	Product	Owner.	

The	Product	Backlog	 is	 continuously	updated	by	 the	Product	Owner	 to	 reflect	 changes	 in	 the	needs	of	 the	
customer,	new	ideas	or	insights,	moves	by	the	competition,	technical	hurdles	that	appear,	and	so	forth.	The	
Team	provides	the	Product	Owner	with	estimates	of	the	effort	required	for	each	item	on	the	Product	Backlog.	
In	addition,	the	Product	Owner	is	responsible	for	assigning	a	business	value	estimate	to	each	individual	item.	
This	is	usually	an	unfamiliar	practice	for	a	Product	Owner.	As	such,	it	is	something	a	Scrum	Master	may	help	
the	Product	Owner	learn	to	do.	With	these	two	estimates	(effort	and	value)	and	perhaps	with	additional	risk	
estimates,	 the	Product	Owner	prioritizes	 the	backlog	 (actually,	 usually	 just	 the	Release	Backlog	 subset)	 to	
maximize	ROI	(choosing	items	of	high	value	with	low	effort)	or	secondarily,	to	reduce	some	major	risk.	As	will	
be	seen,	these	effort	and	value	estimates	may	be	refreshed	each	Sprint	as	people	learn;	consequently,	this	is	a	
continuous	re-prioritization	activity	as the	Product	Backlog	is	ever-evolving.		

Scrum	does	not	define	techniques	for	expressing	or	prioritizing	items	in	the	Product	Backlog	and	it	does	not	
define	an	estimation	technique.		A	common	technique	is	to	estimate	in	terms	of	relative	size	(factoring	in	effort,	
complexity,	and	uncertainty)	using	a	unit	of	“story	points”	or	simply	“points”.	

Over	time,	a	Team	tracks	how	much	work	it	can	do	each	Sprint;	for	example,	averaging	26	points	per	Sprint.	
With	this	information	they	can	project	a	release	date	to	complete	all	features,	or	how	many	features	can	be	
completed	by	a	fixed	date,	if	the	average	continues	and	nothing	changes.		This	average	is	called	the	“velocity”	
of	the	team.		Velocity	is	expressed	in	the	same	units	as	the	Product	Backlog	item	size	estimates.	

The	items	in	the	Product	Backlog	can	vary	significantly	in	size	or	effort.	Larger	ones	are	broken	into	smaller	
items	during	the	Product	Backlog	Refinement	workshop	or	the	Sprint	Planning	Meeting,	and	smaller	ones	may	
be	consolidated.	The	Product	Backlog	items	for	the	upcoming	next	several	Sprints	should	be	small	and	fine-
grained	enough	that	they	are	understood	by	the	Team,	enabling	commitments	made	in	the	Sprint	Planning	
meeting	to	be	meaningful;	this	is	called	an	“actionable”	size.	

One	of	the	myths	about	Scrum	is	that	it	prevents	you	from	writing	detailed	specifications;	in	reality,	it	is	up	to	
the	Product	Owner	and	Team	to	decide	how	much	detail	is	required,	and	this	will	vary	from	one	backlog	item	
to	the	next,	depending	on	the	insight	of	the	Team,	and	other	factors.	State	what	is	important	in	the	least	amount	
of	space	necessary	–	in	other	words,	do	not	describe	every	possible	detail	of	an	item,	just	make	clear	what	is	
necessary	for	it	to	be	understood.	Low	priority	items,	far	from	being	implemented	and	usually	“coarse	grained”	
or	large,	have	less	requirements	details.	High	priority	and	fine-grained	items	that	will	soon	be	implemented	
tend	to	have	more	detail.	

SPRINT	PLANNING		
At	the	beginning	of	each	Sprint,	the	Sprint	Planning	Meeting	takes	place.	It	is	divided	into	two	distinct	sub-
meetings,	the	first	of	which	is	called	Sprint	Planning	Part	One.	

In	Sprint	Planning	Part	One,	the	Product	Owner	and	Team	(with	facilitation	from	the	Scrum	Master)	review	
the	high-priority	items	in	the	Product	Backlog	that	the	Product	Owner	is	interested	in	implementing	this	Sprint.	
They	discuss	the	goals	and	context	for	these	high-priority	items	on	the	Product	Backlog,	providing	the	Team	
with	insight	into	the	Product	Owner’s	thinking.	The	Product	Owner	and	Team	also	review	the	“Definition	of	
Done”	(which	was	established	earlier)	 that	all	 items	must	meet,	 such	as,	 “Done	means	coded	to	standards,	
reviewed,	implemented	with	unit	test-driven	development	(TDD),	tested	with	100	percent	test	automation,	
integrated,	and	documented.”	Part	One	focuses	on	understanding	what	the	Product	Owner	wants.	According	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 21	

	

to	the	rules	of	Scrum,	at	the	end	of	Part	One	the	(always	busy)	Product	Owner	may	leave	although	they	must	
be	available	(for	example,	by	phone)	during	the	next	meeting.	However,	they	are	welcome	to	attend	Part	Two...	

Sprint	Planning	Part	Two	focuses	on	detailed	task	planning	 for	how	 to	 implement	the	 items	that	 the	Team	
decides	to	take	on.	The	Team	selects	the	items	from	the	Product	Backlog	they	commit	to	complete	by	the	end	
of	the	Sprint,	starting	at	the	top	of	the	Product	Backlog	(in	others	words,	starting	with	the	items	that	are	the	
highest	priority	for	the	Product	Owner)	and	working	down	the	list	in	order.	This	is	a	key	practice	in	Scrum:	
The	Team	decides	how	much	work	it	will	commit	to	complete,	rather	than	having	it	assigned	to	them	by	the	
Product	Owner.	This	makes	for	a	more	reliable	commitment	because	the	Team	is	making	it	based	on	its	own	
analysis	and	planning,	rather	than	having	it	decided	by	someone	else.	While	the	Product	Owner	does	not	have	
control	over	how	much	the	Team	commits	to,	he	or	she	knows	that	the	items	the	Team	is	committing	to	are	
drawn	 from	 the	 top	 of	 the	 Product	 Backlog	 –	 in	 other	words,	 the	 items	 that	 he	 or	 she	 has	 rated	 as	most	
important.	The	Team	has	the	ability	to	lobby	for	items	from	further	down	the	list;	this	usually	happens	when	
the	Team	and	Product	Owner	realize	that	something	of	lower	priority	fits	easily	and	appropriately	with	the	
high	priority	items.	

The	Sprint	Planning	Meeting	will	often	last	a	number	of	hours,	but	no	more	than	eight	hours	for	a	four-week	
Sprint	–	the	Team	is	making	a	serious	commitment	to	complete	the	work,	and	this	commitment	requires	careful	
thought	to	be	successful.	The	Team	will	probably	begin	the	Sprint	Planning	Part	Two	by	estimating	how	much	
time	each	member	has	for	Sprint-related	work	–	in	other	words,	their	average	workday	minus	the	time	they	
spend	attending	meetings,	doing	email,	taking	lunch	breaks,	and	so	on.	For	most	people	this	works	out	to	4-6	
hours	of	time	per	day	available	for	Sprint-related	work.	This	is	the	team’s	capacity	for	the	upcoming	Sprint.	See	
Figure	 3.	
	

FIGURE	3.	ESTIMATING	AVAILABLE	HOURS	

	

Once	the	capacity	is	determined,	the	Team	figures	out	how	many	Product	Backlog	items	they	can	complete	in	
that	 time,	 and	 how	 they	 will	 go	 about	 completing	 them.	 	 This	 often	 starts	 with	 a	 design	 discussion	 at	 a	
whiteboard.	 	Once	 the	overall	design	 is	understood,	 the	Team	decomposes	 the	Product	Backlog	 items	 into	
work.		The	Team	starts	with	the	first	item	on	the	Product	Backlog	–	in	other	words,	the	Product	Owner’s	highest	
priority	item	–	and	working	together,	breaks	it	down	into	individual	tasks,	which	are	recorded	in	a	document	
called	the	Sprint	Backlog	(Figure	4).		

As	 mentioned,	 the	 Product	 Owner	 must	 be	 available	 during	 Part	 Two	 (such	 as	 via	 the	 phone)	 so	 that	
clarification	is	possible.	The	Team	will	move	sequentially	down	the	Product	Backlog	in	this	way,	until	it’s	used	
up	all	its	estimated	capacity.	At	the	end	of	the	meeting,	the	Team	will	have	produced	a	list	of	all	the	tasks	with	
estimates	(typically	in	hours	or	fractions	of	a	day).		

Sprint Length 2 weeks
Workdays during Sprint 8 days

Tracy 8 4 32
Sanjay 7 5 35
Phillip 8 4 32
Jing 6 5 30

* Net of vacation and other days out of office

Team
Member

Available
Days During

Sprint*

Available
Hours per

Day

Total
Available

Hours

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 22	

	

Scrum	encourages	multi-skilled	workers,	rather	than	only	“working	to	job	title”	such	as	a	“tester”	only	doing	
testing.	In	other	words,	Team	members	“go	to	where	the	work	is”	and	help	out	as	possible.	If	there	are	many	
testing	tasks,	then	all	Team	members	may	help.	This	does	not	imply	that	everyone	is	a	generalist;	no	doubt	
some	people	are	especially	skilled	in	testing	(and	so	on)	but	Team	members	work	together	and	learn	new	skills	
from	each	other.	Consequently,	during	task	generation	and	estimation	in	Sprint	Planning,	it	is	not	necessary	–	
nor	 appropriate	 –	 for	 people	 to	 volunteer	 for	 all	 the	 tasks	 “they	 can	 do	 best.”	 Rather,	 it	 is	 better	 to	 only	
volunteer	for	one	task	at	a	time,	when	it	is	time	to	pick	up	a	new	task,	and	to	consider	choosing	tasks	that	will	
on	purpose	involve	learning	(perhaps	by	pair	work	with	a	specialist).		

All	that	said,	there	are	rare	times	when	John	may	do	a	particular	task	because	it	would	take	far	too	long	or	be	
impossible	for	others	to	learn	–	perhaps	John	is	the	only	person	with	any	artistic	skill	to	draw	pictures.	Other	
Team	members	could	not	draw	a	“stick	man”	if	their	life	depended	on	it.	In	this	rare	case	–	and	if	it	is	not	rare	
and	not	getting	rarer	as	the	Team	learns,	there	is	something	wrong	–	it	may	be	necessary	to	ask	if	the	total	
planned	drawing	tasks	that	must	be	done	by	John	are	feasible	within	the	short	Sprint.	

Many	Teams	also	make	use	of	a	visual	task-tracking	tool,	in	the	form	of	a	wall-sized	task	board	where	tasks	
(written	on	Post-It	Notes)	migrate	during	the	Sprint	across	columns	labeled	“Not	Yet	Started,”	“In	Progress,”	
and	“Completed.”	See	Figure	5.	

FIGURE	4.	SPRINT	BACKLOG	

FIGURE	5.	VISUAL	MANAGEMENT	-	SPRINT	BACKLOG	TASKS	ON	THE	WALL	

New Estimates of Effort
Remaining as of Day...

Product Backlog Item Sprint Task Volunteer 1 2 3 4 5 6

modify database 5

create webpage (UI) 8

create webpage (Javascript logic) 13

write automated acceptance tests 13

update buyer help webpage 3

. . .

merge DCP code and complete layer-level tests 5

complete machine order for pRank 8

change DCP and reader to use pRank http API 13

Initial
Estimate of

Effort

As a buyer, I want to place
a book in a shopping cart

Improve transaction
processing performance

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 23	

	

One	of	the	pillars	of	Scrum	is	that	once	the	Team	makes	its	commitment,	any	additions	or	changes	must	be	
deferred	until	the	next	Sprint.	This	means	that	if	halfway	through	the	Sprint	the	Product	Owner	decides	there	
is	a	new	item	he	or	she	would	like	the	Team	to	work	on,	he	cannot	make	the	change	until	the	start	of	the	next	
Sprint.	If	an	external	circumstance	appears	that	significantly	changes	priorities,	and	means	the	Team	would	be	
wasting	its	time	if	it	continued	working,	the	Product	Owner	or	the	Team	can	terminate	the	Sprint.	The	Team	
stops,	and	a	new	Sprint	Planning	meeting	initiates	a	new	Sprint.	The	disruption	of	doing	this	is	usually	great;	
this	serves	as	a	disincentive	for	the	Product	Owner	or	Team	to	resort	to	this	dramatic	decision.	

There	is	a	powerful,	positive	influence	that	comes	from	the	Team	being	protected	from	changing	goals	during	
the	Sprint.	First,	the	Team	gets	to	work	knowing	with	absolute	certainty	that	its	commitments	will	not	change,	
that	reinforces	the	Team’s	focus	on	ensuring	completion.	Second,	it	disciplines	the	Product	Owner	into	really	
thinking	through	the	items	he	or	she	prioritizes	on	the	Product	Backlog	and	offers	to	the	Team	for	the	Sprint.			

By	 following	 these	Scrum	rules	 the	Product	Owner	gains	 two	things.	First,	he	or	she	has	 the	confidence	of	
knowing	the	Team	has	made	a	commitment	to	complete	a	realistic	and	clear	set	of	work	it	has	chosen. Over	
time	 a	 Team	 can	 become	 quite	 skilled	 at	 choosing	 and	 delivering	 on	 a	 realistic	 commitment.	 Second,	 the	
Product	Owner	gets	to	make	whatever	changes	he	or	she	likes	to	the	Product	Backlog	before	the	start	of	the	
next	 Sprint.	 At	 that	 point,	 additions,	 deletions,	 modifications,	 and	 re-prioritizations	 are	 all	 possible	 and	
acceptable.	While	the	Product	Owner	is	not	able	to	make	changes	to	the	selected	items	under	development	
during	the	current	Sprint,	he	or	she	is	only	one	Sprint’s	duration	or	less	away	from	making	any	changes	they	
wish.	Gone	is	the	stigma	around	change	–	change	of	direction,	change	of	requirements,	or	just	plain	changing	
your	mind	–	and	it	may	be	for	this	reason	that	Product	Owners	are	usually	as	enthusiastic	about	Scrum	as	
anyone.	

DAILY	SCRUM	
Once	the	Sprint	has	started,	the	Team	engages	in	another	of	the	key	Scrum	practices:	The	Daily	Scrum.	This	is	
a	short	(15	minutes	or	less)	meeting	that	happens	every	workday	at	an	appointed	time.	Everyone	on	the	Team	
attends.	To	keep	it	brief,	 it	 is	recommended	that	everyone	remain	standing.	It	 is	the	Team’s	opportunity	to	
synchronize	their	work	and	report	to	each	other	on	obstacles.	In	the	Daily	Scrum,	one	by	one,	each	member	of	
the	Team	reports	three	(and	only	three)	things	to	the	other	members	of	the	Team:	(1)	What	they	were	able	to	
get	done	since	the	last	meeting;	(2)	what	they	are	planning	to	finish	by	the	next	meeting;	and	(3)	any	blocks	or	
impediments	that	are	in	their	way.		

Note	that	the	Daily	Scrum	is	not	a	status	meeting	to	report	to	a	manager;	it	is	a	time	for	a	self-organizing	Team	
to	share	with	each	other	what	is	going	on,	to	help	them	coordinate.	Someone	makes	note	of	the	blocks,	and	the	
Scrum	Master	 is	 responsible	 to	help	Team	members	resolve	 them.	There	 is	no	discussion	during	 the	Daily	
Scrum,	only	reporting	answers	to	the	three	questions;	if	discussion	is	required	it	takes	place	immediately	after	
the	Daily	Scrum	in	a	follow-up	meeting,	although	in	Scrum	no	one	is	required	to	attend	this.	This	follow-up	
meeting	is	a	common	event	where	the	Team	adapts	to	the	information	they	heard	in	the	Daily	Scrum:	in	other	
words,	 another	 inspect	 and	 adapt	 cycle.	 It	 is	 generally	 recommended	 not	 to	 have	managers	 or	 others	 in	
positions	of	perceived	authority	attend	the	Daily	Scrum.		This	risks	making	the	Team	feel	“monitored”	–	under	
pressure	 to	 report	 major	 progress	 every	 day	 (an	 unrealistic	 expectation),	 and	 inhibited	 about	 reporting	
problems	–	and	it	tends	to	undermine	the	Team’s	self-management,	and	invite	micromanagement.		It	would	be	
more	useful	for	a	stakeholder	to	instead	reach	out	to	the	Team	following	the	meeting,	and	offer	to	help	with	
any	blocks	that	are	slowing	the	Team’s	progress.	

	
	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 24	

	

UPDATING	SPRINT	BACKLOG	&	SPRINT	BURNDOWN	CHART	
The	Team	in	Scrum	is	self-managing,	and	in	order	to	do	this	successfully,	it	must	know	how	it	is	doing.		Every	
day,	the	Team	members	update	their	estimate	of	the	amount	of	time	remaining	to	complete	their	current	task	
in	the	Sprint	Backlog	(Figure	6).	Following	this	update,	someone	adds	up	the	hours	remaining	for	the	Team	
as	a	whole,	and	plots	it	on	the	Sprint	Burndown	Chart	(Figure	7).	This	graph	shows,	each	day,	a	new	estimate	
of	how	much	work	(measured	in	person	hours)	remains	until	the	Team’s	tasks	are	finished.	Ideally,	this	is	a	
downward	sloping	graph	that	is	on	a	trajectory	to	reach	“zero	effort	remaining”	by	the	last	day	of	the	Sprint.	
Hence	it	is	called	a	burndown	chart.	And	while	sometimes	it	looks	good,	often	it	does	not;	this	is	the	reality	of	
product	development.	The	important	thing	is	that	it	shows	the	Team	their	progress	towards	their	goal,	not	in	
terms	of	how	much	time	was	spent	in	the	past	(an	irrelevant	fact	in	terms	of	progress),	but	in	terms	of	how	
much	work	remains	in	the	future	–	what	separates	the	Team	from	their	goal.	If	the	burndown	line	is	not	tracking	
downwards	towards	completion	near	the	end	of	the	Sprint,	then	the	Team	needs	to	adjust,	such	as	to	reduce	
the	scope	of	the	work	or	to	find	a	way	to	work	more	efficiently	while	still	maintaining	a	sustainable	pace.		

While	the	Sprint	Burndown	chart	can	be	created	and	displayed	using	a	spreadsheet,	many	Teams	find	it	is	more	
effective	to	show	it	on	paper	on	a	wall	 in	their	workspace,	with	updates	in	pen;	this	“low-tech/high-touch”	
solution	is	fast,	simple,	and	often	more	visible	than	a	computer	chart.	

FIGURE	6.	DAILY	UPDATES	OF	WORK	REMAINING	ON	THE	SPRINT	BACKLOG	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 25	

	

FIGURE	7.	SPRINT	BURNDOWN	CHART		

PRODUCT	BACKLOG	REFINEMENT	
One	of	the	lesser	known,	but	valuable,	guidelines	in	Scrum	is	that	five	or	ten	percent	of	each	Sprint	must	be	
dedicated	by	the	Team	to	refining	(or	“grooming”)	the	Product	Backlog.	This	includes	detailed	requirements	
analysis,	splitting	large	items	into	smaller	ones,	estimation	of	new	items,	and	re-estimation	of	existing	items.	
Scrum	is	silent	on	how	this	work	is	done,	but	a	frequently	used	technique	is	a	focused	workshop	near	the	end	
of	the	Sprint,	so	that	the	Team	and	Product	Owner	can	dedicate	themselves	to	this	work	without	interruption.		

For	a	two-week	Sprint,	five	percent	of	the	duration	implies	that	each	Sprint	there	is	a	half-day	Product	Backlog	
Refinement	workshop.	This	refinement	activity	is	not	for	items	selected	for	the	current	Sprint;	it	is	for	items	
for	the	future,	most	likely	in	the	next	one	or	two	Sprints.	With	this	practice,	Sprint	Planning	becomes	relatively	
simple	because	the	Product	Owner	and	Scrum	Team	start	the	planning	with	a	clear,	well-analyzed	and	carefully	
estimated	set	of	items.	A	sign	that	this	refinement	workshop	is	not	being	done	(or	not	being	done	well)	is	that	
Sprint	Planning	involves	significant	questions,	discovery,	or	confusion	and	feels	 incomplete;	planning	work	
then	often	spills	over	into	the	Sprint	itself,	which	is	typically	not	desirable.	

ENDING	THE	SPRINT	
One	of	the	core	tenets	of	Scrum	is	that	the	duration	of	the	Sprint	is	never	extended	–	it	ends	on	the	assigned	
date	regardless	of	whether	the	Team	has	completed	the	work	it	committed	to.	A	Team	typically	over-commits	
in	its	first	few	Sprints	and	fails	to	accomplish	its	commitments.	Sometimes	it	then	overcompensates	and	under-
commits,	and	finishes	early	(in	which	case	it	can	ask	the	Product	Owner	for	more	Product	Backlog	items	to	
work	on).	But	by	the	third	or	fourth	Sprint	a	Team	has	typically	figured	out	what	it	is	capable	of	delivering	
(most	of	the	time),	and	they	will	meet	their	Sprint	goals	more	reliably	after	that.	Teams	are	encouraged	to	pick	
one	duration	for	their	Sprints	(say,	two	weeks)	and	not	change	it.	This	helps	the	Team	learn	how	much	it	can	
accomplish,	which	helps	in	both	estimation	and	longer-term	release	planning.	It	also	helps	the	Team	achieve	a	
rhythm	for	their	work;	this	is	often	referred	to	as	the	“heartbeat”	of	the	Team	in	Scrum.	

SPRINT	REVIEW	
After	the	Sprint	ends,	there	is	the	Sprint	Review,	where	the	Team	and	the	Product	Owner	review	the	Sprint.	
This	 is	often	mislabeled	the	“demo”	but	that	does	not	capture	the	real	 intent	of	this	meeting.	A	key	idea	in	
Scrum	is	inspect	and	adapt.	To	see	and	learn	what	is	going	on	and	then	evolve	based	on	feedback,	in	repeating	
cycles.	The	Sprint	Review	is	an	inspect	and	adapt	activity	for	the	product.	It	is	a	time	for	the	Product	Owner	to	
learn	what	is	going	on	with	the	product	and	with	the	Team	(that	is,	a	review	of	the	Sprint);	and	for	the	Team	
to	learn	what	is	going	on	with	the	Product	Owner	and	the	market.	Consequently,	the	most	important	element	
of	the	Review	is	an	in-depth	conversation	between	the	Team	and	Product	Owner	to	learn	the	situation,	to	get	
advice,	and	so	forth.	The	review	includes	a	demo	of	what	the	Team	built	during	the	Sprint,	but	if	the	focus	of	
the	review	is	a	demo	rather	than	conversation,	there	is	an	imbalance.		

A	useful	–	but	often	overlooked	–	Scrum	guideline	is	that	it	the	Scrum	Master’s	responsibility	to	ensure	that	
everyone	 knows	 the	 “Definition	 of	 Done”	 defined	 for	 this	 product	 or	 release.	 He	 prevents	 the	 team	 from	
demonstrating	or	discussing	Product	Backlog	Items	that	are	not	‘done’	according	to	the	“Definition	of	Done.”	
Items	that	are	not	‘done’	go	back	to	the	Product	Backlog	and	will	be	re-prioritized	by	the	Product	Owner.	In	
way,	 there	 is	 transparency	regarding	the	quality	of	 the	work;	Teams	cannot	 fake	the	quality	by	presenting	
software	that	appears	to	work	well,	but	may	be	implemented	with	a	messy	pile	of	poor	quality	and	untested	
code.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 26	

	

Present	 at	 this	 meeting	 are	 the	 Product	 Owner,	 Team	 members,	 and	 Scrum	 Master,	 plus	 customers,	
stakeholders,	experts,	executives,	and	anyone	else	interested.	The	demo	portion	of	the	Sprint	Review	is	not	a	
“presentation”	the	Team	gives	–	there	is	no	slideware.	A	guideline	in	Scrum	is	that	no	more	than	30	minutes	
should	be	spent	preparing	for	the	review,	otherwise	it	suggests	something	is	wrong	with	the	work	of	the	Team.		
It	is	simply	a	demo	of	what	has	been	built.	Anyone	present	is	free	to	ask	questions	and	give	input.		

SPRINT	RETROSPECTIVE	
The	Sprint	Review	involves	inspect	and	adapt	regarding	the	product.	The	Sprint	Retrospective,	which	follows	
the	Review,	involves	inspect	and	adapt	regarding	the	process.	 	This	is	a	practice	that	some	Teams	skip,	and	
that’s	unfortunate,	because	it’s	the	main	mechanism	for	taking	the	visibility	that	Scrum	provides	into	areas	of	
potential	improvement,	and	turning	it	into	results.	It’s	an	opportunity	for	the	Team	to	discuss	what’s	working	
and	what’s	not	working,	and	agree	on	changes	to	try.	The	Team	and	Scrum	Master	will	attend,	and	the	Product	
Owner	is	welcome	but	not	required	to	attend.	Sometimes	the	Scrum	Master	can	act	as	an	effective	facilitator	
for	the	retrospective,	but	it	may	be	better	to	find	a	neutral	outsider	to	facilitate	the	meeting;	a	good	approach	
is	for	Scrum	Masters	to	facilitate	each	others’	retrospectives,	which	enables	cross-pollination	among	Teams.	

There	are	many	techniques	for	conducting	a	Sprint	Retrospective,	and	the	book	Agile	Retrospectives	(Derby,	
Larsen	2006)	provides	a	useful	catalogue	of	techniques.		A	simple	way	to	structure	the	discussion	is	to	draw	
two	columns	on	a	whiteboard,	labeled	“What’s	Working	Well”	and	“What	Could	Work	Better”	–	and	then	go	
around	the	room,	with	each	person	adding	one	or	more	items	to	either	list.	As	items	are	repeated,	check	marks	
are	added	next	to	them,	so	the	common	items	become	clear.	Then	the	Team	looks	for	underlying	causes,	and	
agrees	on	a	small	number	of	changes	to	try	in	the	upcoming	Sprint,	along	with	a	commitment	to	review	the	
results	at	the	next	Sprint	Retrospective.	

A	useful	practice	at	the	end	of	the	Retrospective	is	for	the	Team	to	label	each	of	the	items	in	each	column	with	
either	a	“C”	if	it	is	caused	by	Scrum	(in	other	words,	without	Scrum	it	would	not	be	happening),	or	an	“E”	if	it	is	
exposed	by	Scrum	(in	other	words,	it	would	be	happening	with	or	without	Scrum,	but	Scrum	makes	it	known	
to	the	Team),	or	a	“U”	if	it’s	unrelated	to	Scrum	(like	the	weather).	The	Team	may	find	a	lot	of	C’s	on	the	“What’s	
Working	Well”	side	of	the	board,	and	a	lot	of	E’s	on	the	“What	Could	Work	Better	”;	this	is	good	news,	even	if	
the	“What	Could	Work	Better”	list	is	a	long	one,	because	the	first	step	to	solving	underlying	issues	is	making	
them	visible,	and	Scrum	is	a	powerful	catalyst	for	that.	

UPDATING	RELEASE	BACKLOG	&	BURNDOWN	CHART	
At	this	point,	some	items	have	been	finished,	some	have	been	added,	some	have	new	estimates,	and	some	have	
been	dropped	from	the	release	goal.	The	Product	Owner	is	responsible	for	ensuring	that	these	changes	are	
reflecting	 in	 the	 Release	 Backlog	 (and	more	 broadly,	 the	 Product	 Backlog).	 In	 addition,	 Scrum	 includes	 a	
Release	 Burndown	 chart	 that	 shows	 progress	 towards	 the	 release	 date.	 It	 is	 analogous	 to	 the	 Sprint	
Burndown	chart,	but	is	at	the	higher	level	of	items	(requirements)	rather	than	fine-grained	tasks.	Since	a	new	
Product	Owner	is	unlikely	to	know	why	or	how	to	create	this	chart,	this	is	another	opportunity	for	a	Scrum	
Master	to	help	the	Product	Owner.	See	Figure	8	and	Figure	9	for	an	example	of	the	Release	Backlog	and	Release	
Burndown	chart.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 27	

	

FIGURE	8.	RELEASE	BACKLOG	(A	SUBSET	OF	THE	PRODUCT	BACKLOG)		

FIGURE	9.	RELEASE	BURNDOWN	CHART	

STARTING	THE	NEXT	SPRINT	
Following	the	Sprint	Review,	the	Product	Owner	may	update	the	Product	Backlog	with	any	new	insight.	At	this	
point,	the	Product	Owner	and	Team	are	ready	to	begin	another	Sprint	cycle.	There	is	no	down	time	between	
Sprints	 –	Teams	normally	 go	 from	a	 Sprint	Retrospective	 one	 afternoon	 into	 the	next	 Sprint	 Planning	 the	
following	morning	(or	after	the	weekend).		

One	 of	 the	 principles	 of	 agile	 development	 is	 “sustainable	 pace”,	 and	 only	 by	working	 regular	 hours	 at	 a	
reasonable	level	can	Teams	continue	this	cycle	indefinitely.		

RELEASE	SPRINT	

New Estimates of Effort
Remaining at end of Sprint...

Item Priority 1 2 3 4 5 6

... 1 7 5 0 0 0

As a buyer, I want to remove a book in a shopping cart ... 2 6 2 0 0 0

... 3 6 13 13 0 0

... 4 6 20 20 20 0

Upgrade all servers to Apache 2.2.3 ... 5 5 13 13 13 13

... 6 2 3 3 3 3

As a shopper, I want to create and save a wish list ... 7 7 40 40 40 40

... 8 4 20 20 20 20

.

Total 537 580 570 500

Details
(wiki
URL)

Estimate
of Value

Initial
Estimate
of Effort

As a buyer, I want to place a book in a shopping cart
(see UI sketches on wiki page)

Improve transaction processing performance (see target
performance metrics on wiki)

Investigate solutions for speeding up credit card
validation (see target performance metrics on wiki)

Diagnose and fix the order processing script errors
(bugzilla ID 14823)

As a shopper, I want to to add or delete items on my
wish list

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 28	

	

The	perfection	vision	of	Scrum	is	that	the	product	 is	potentially	shippable	at	 the	end	of	each	Sprint,	which	
implies	there	is	no	wrap	up	work	required,	such	as	testing	or	documentation.	The	implication	is	that	everything	
is	completely	 finished	every	Sprint;	that	you	could	actually	ship	it	or	deploy	it	 immediately	after	the	Sprint	
Review.	 This	 means	 that	 each	 increment	 is	 a	 complete	 slice	 of	 the	 final	 product	 and	 gives	 complete	
transparency	to	the	Product	Owner	and	stakeholders.	They		know	exactly	where	they	are	at	the	end	of	every	
Sprint.	

However,	many	organizations	have	weak	development	practices,	tools	and	infrastructure	and	cannot	achieve	
this	perfection	vision,	or	there	are	other	extenuating	circumstances	(such	as,	“the	machine	broke”).	In	this	case,	
there	will	be	some	remaining	work,	such	as	final	production	environment	integration	testing,	and	so	there	will	
be	the	need	for	a	“Release	Sprint”	to	handle	this	remaining	work.		

Note	that	the	need	for	a	Release	Sprint	is	a	sign	of	some	weakness;	the	ideal	is	that	it	is	not	required.	When	
necessary,	Sprints	continue	until	the	Product	Owner	decides	the	product	is	almost	ready	for	release,	at	which	
point	there	will	be	a	Release	Sprint	to	prepare	for	launch.	If	the	Team	has	followed	good	development	practices,	
with	continuous	refactoring	and	integration,	and	effective	testing	during	each	Sprint,	there	should	be	little	pre-
release	stabilization	or	other	wrap-up	work	required.	

RELEASE	PLANNING	&	INITIAL	PRODUCT	BACKLOG	REFINEMENT	
A	question	that	is	sometimes	asked	is	how,	in	an	iterative	model,	can	long-term	release	planning	be	done.	There	
are	two	cases	to	consider:	(1)	a	new	product	in	its	first	release,	and	(2)	an	existing	product	in	a	later	release.	

In	the	case	of	a	new	product,	or	an	existing	product	just	adopting	Scrum,	there	is	the	need	to	do	initial	Product	
Backlog	refinement	before	the	first	Sprint,	where	the	Product	Owner	and	Team	shape	a	proper	Scrum	Product	
Backlog.	This	could	take	a	few	days	or	a	week,	and	involves	a	vision	workshop,	some	detailed	requirements	
analysis,	and	estimation	of	all	the	items	identified	for	the	first	release.	

Surprisingly	in	Scrum,	in	the	case	of	an	established	product	with	an	established	Product	Backlog,	there	should	
not	be	the	need	for	any	special	or	extensive	release	planning	for	the	next	release.	Why?	Because	the	Product	
Owner	and	Team	should	be	doing	Product	Backlog	refinement	every	Sprint	(five	or	ten	percent	of	each	Sprint),	
continuously	preparing	for	the	future.	This	continuous	product	development	mode	obviates	the	need	for	the	
dramatic	 punctuated	 prepare-execute-conclude	 stages	 one	 sees	 in	 traditional	 sequential	 life	 cycle	
development.	

During	an	initial	Product	Backlog	refinement	workshop	and	during	the	continuous	backlog	refinement	each	
Sprint,	the	Team	and	Product	Owner	will	do	release	planning,	refining	the	estimates,	priorities,	and	content	as	
they	learn.		

Some	releases	are	date-driven;	 for	example:	“We	will	release	version	2.0	of	our	project	at	a	trade-show	on	
November	10.”	In	this	situation,	the	Team	will	complete	as	many	Sprints	(and	build	as	many	features)	as	is	
possible	 in	the	time	available.	Other	products	require	certain	features	to	be	built	before	they	can	be	called	
complete	and	the	product	will	not	launch	until	these	requirements	are	satisfied,	however	long	that	takes.	Since	
Scrum	emphasizes	producing	potentially	shippable	code	each	Sprint,	the	Product	Owner	may	choose	to	start	
doing	interim	releases,	to	allow	the	customer	to	reap	the	benefits	of	completed	work	sooner.	

Since	they	cannot	possibly	know	everything	up	front,	the	focus	is	on	creating	and	refining	a	plan	to	give	the	
release	broad	direction,	and	clarify	how	tradeoff	decisions	will	be	made	(scope	versus	schedule,	for	example).	
Think	of	this	as	the	roadmap	guiding	you	towards	your	final	destination;	which	exact	roads	you	take	and	the	
decisions	you	make	during	the	journey	may	be	determined	en	route.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 29	

	

	

Most	Product	Owners	choose	one	release	approach.	For	example,	they	will	decide	a	release	date,	and	will	work	
with	the	Team	to	estimate	the	Release	Backlog	items	that	can	be	completed	by	that	date.	In	situations	where	a	
“fixed	price	/	fixed	date	/	fixed	deliverable”	commitment	is	required	–	for	example,	contract	development	–	
one	or	more	of	those	parameters	must	have	a	built-in	buffer	to	allow	for	uncertainty	and	change;	in	this	respect,	
Scrum	is	no	different	from	other	approaches.	

APPLICATION	OR	PRODUCT	FOCUS	
For	applications	or	products	–	either	for	the	market	or	for	internal	use	within	an	organization	–	Scrum	moves	
groups	 away	 from	 the	 older	 project-centric	 model	 toward	 a	 continuous	 application/product	 development	
model.	 There	 is	 no	 longer	 a	 project	 with	 a	 beginning,	 middle,	 and	 end.	 And	 hence	 no	 traditional	 project	
manager.	Rather,	there	is	simply	a	stable	Product	Owner	and	a	long-lived	self-managing	Team	that	collaborate	
in	an	“endless”	series	of	fixed-length	Sprints,	until	the	product	or	application	is	retired.	All	necessary	“project”	
management	work	is	handled	by	the	Team	and	the	Product	Owner	–	who	is	an	internal	business	customer	or	
from	Product	Management.	It	is	not	managed	by	an	IT	manager	or	someone	from	a	Project	Management	Office.		

Scrum	can	also	be	used	for	true	projects	that	are	one-time	initiatives	(rather	than	work	to	create	or	evolve	long-
lived	applications);	still,	in	this	case	the	Team	and	Product	Owner	do	the	project	management.		

What	if	there	is	insufficient	new	work	from	one	or	more	existing	applications	to	warrant	a	dedicated	long-lived	
Team	for	each	application?	In	this	case,	a	stable	long-lived	Team	may	take	on	items	from	one	application	in	one	
Sprint,	and	then	items	from	another	in	the	next	Sprint;	in	this	situation	the	Sprints	are	often	quite	short,	such	
as	one	week.		

Occasionally,	there	is	insufficient	new	work	even	for	the	prior	solution,	and	the	Team	may	take	on	items	from	
several	applications	during	the	same	Sprint;	however,	beware	this	solution	as	it	may	devolve	into	unproductive	
multitasking	across	multiple	applications.	A	basic	productivity	theme	in	Scrum	is	for	the	Team	to	be	focused	on	
one	product	or	application	for	one	Sprint.	

COMMON	CHALLENGES	
Scrum	is	not	only	a	concrete	set	of	practices	–	rather,	and	more	importantly,	it	is	a	framework	that	provides	
transparency,	 and	 a	 mechanism	 that	 allows	 “inspect	 and	 adapt”.	 	 Scrum	 works	 by	 making	 visible	 the	
dysfunction	and	impediments	that	are	impacting	the	Product	Owner	and	the	Team’s	effectiveness,	so	that	they	
can	be	addressed.		For	example,	the	Product	Owner	may	not	really	know	the	market,	the	features,	or	how	to	
estimate	their	relative	business	value.	Or	the	Team	may	be	unskillful	in	effort	estimation	or	development	work.	

The	 Scrum	 framework	 will	 quickly	 reveal	 these	 weaknesses.	 Scrum	 does	 not	 solve	 the	 problems	 of	
development;	it	makes	them	painfully	visible,	and	provides	a	framework	for	people	to	explore	ways	to	resolve	
problems	in	short	cycles	and	with	small	improvement	experiments.	

Suppose	the	Team	fails	 to	deliver	what	 they	committed	to	 in	 the	 first	Sprint	due	to	poor	task	analysis	and	
estimation	skill.	To	the	Team,	this	feels	like	failure.	But	in	reality,	this	experience	is	the	necessary	first	step	
toward	becoming	more	realistic	and	thoughtful	about	its	commitments.		This	pattern	–	of	Scrum	helping	make	
visible	dysfunction,	enabling	the	Team	to	do	something	about	it	–	is	the	basic	mechanism	that	produces	the	
most	significant	benefits	that	Teams	using	Scrum	experience.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 30	

	

One	common	mistake	made,	when	presented	with	a	Scrum	practice	that	is	challenging,	is	to	change	Scrum.	For	
example,	Teams	 that	have	 trouble	delivering	on	 their	Sprint	commitment	might	decide	 to	make	 the	Sprint	
duration	extendable,	so	it	never	runs	out	of	time	–	and	in	the	process,	ensure	it	never	has	to	learn	how	to	do	a	
better	job	of	estimating	and	managing	its	time.	In	this	way,	without	coaching	and	the	support	of	an	experienced	
Scrum	Master,	organizations	can	mutate	Scrum	into	just	a	mirror	image	of	its	own	weaknesses	and	dysfunction,	
and	 undermine	 the	 real	 benefit	 that	 Scrum	 offers:	 Making	 visible	 the	 good	 and	 the	 bad,	 and	 giving	 the	
organization	the	choice	of	elevating	itself	to	a	higher	level.	

Another	common	mistake	is	to	assume	that	a	practice	is	discouraged	or	prohibited	just	because	Scrum	does	
not	specifically	require	it.	For	example,	Scrum	does	not	require	the	Product	Owner	to	set	a	long-term	strategy	
for	his	or	her	product;	nor	does	it	require	engineers	to	seek	advice	from	more	experienced	engineers	about	
complex	technical	problems.	Scrum	leaves	it	to	the	individuals	involved	to	make	the	right	decision;	and	in	most	
cases,	both	of	these	practices	(along	with	many	others)	are	well	advised.	

Something	else	to	be	wary	of	is	managers	imposing	Scrum	on	their	Teams;	Scrum	is	about	giving	a	Team	space	
and	tools	to	manage	itself,	and	having	this	dictated	from	above	is	not	a	recipe	for	success.	A	better	approach	
might	begin	with	a	Team	learning	about	Scrum	from	a	peer	or	manager,	getting	comprehensively	educated	in	
professional	 training,	and	then	making	a	decision	as	a	Team	to	 follow	the	practices	 faithfully	 for	a	defined	
period;	at	the	end	of	that	period,	the	Team	will	evaluate	its	experience,	and	decide	whether	to	continue.	

The	good	news	is	that	while	the	first	Sprint	is	usually	very	challenging	to	the	Team,	the	benefits	of	Scrum	tend	
to	be	visible	by	the	end	of	it,	leading	many	new	Scrum	Teams	to	exclaim:	“Scrum	is	hard,	but	it	sure	is	a	whole	
lot	better	than	what	we	were	doing	before!”	

APPENDIX:	TERMINOLOGY	
	
Burn	Down	 	
The	trend	of	work	remaining	across	time	in	a	Sprint,	a	Release,	or	a	Product.	The	source	of	the	raw	data	is	the	
Sprint	Backlog	and	the	Product	Backlog,	with	work	remaining	tracked	on	the	vertical	axis	and	the	time	
periods	(days	of	a	Sprint,	or	Sprints)	tracked	on	the	horizontal	axis.	

Chicken	
Someone	who	is	interested	in	the	project	but	does	not	have	formal	Scrum	responsibilities	and	
accountabilities	(Team,	Product	Owner,	Scrum	Master).	

Daily	Scrum	

A	short	meeting	held	daily	by	each	Team	during	which	the	Team	members	inspect	their	work,	synchronize	
their	work	and	progress	and	report	and	impediments	to	the	Scrum	Master	for	removal.	Follow-on	meetings	
to	adapt	upcoming	work	to	optimize	the	Sprint	may	occur	after	the	Daily	Scrum	meetings.	

Done	

Complete	as	mutually	agreed	to	by	all	parties	and	that	conforms	to	an	organization’s	standards,	conventions,	
and	guidelines.	When	something	is	reported	as	“done”	at	the	Sprint	Review	meeting,	it	must	conform	to	this	
agreed	definition.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 31	

	

Estimated	Work	Remaining	(Sprint	Backlog	items)	

The	number	of	hours	that	a	Team	member	estimates	remain	to	be	worked	on	any	task.	This	estimate	is	
updated	at	the	end	of	every	day	when	the	Sprint	Backlog	task	is	worked	on.	The	estimate	is	the	total	
estimated	hours	remaining,	regardless	of	the	number	of	people	that	perform	the	work.	

Increment	
Product	functionality	that	is	developed	by	the	Team	during	each	Sprint	that	is	potentially	shippable	or	of	use	
to	the	Product	Owner’s	stakeholders.	

Increment	of	Potentially	Shippable	Product	Functionality	
A	complete	slice	of	the	overall	product	or	system	that	could	be	used	by	the	Product	Owner	or	stakeholders	if	
they	chose	to	implement	it.	

Sprint	

An	iteration,	or	one	repeating	cycle	of	similar	work,	that	produces	increment	of	product	or	system.	No	longer	
than	one	month	and	usually	more	than	one	week.	The	duration	is	fixed	throughout	the	overall	work	and	all	
teams	working	on	the	same	system	or	product	use	the	same	length	cycle.	

Pig	
Someone	exercising	one	of	the	three	Scrum	roles	(Team,	Product	Owner,	Scrum	Master)	who	has	made	a	
commitment	and	has	the	authority	to	fulfill	it.	

Product	Backlog	
A	prioritized	list	of	requirements	with	estimated	times	to	turn	them	into	completed	product	functionality.	
Estimates	are	more	precise	the	higher	an	item	is	in	the	Product	Backlog	priority..	The	list	emerges,	changing	
as	business	conditions	or	technology	changes.	

Product	Backlog	Item	
Functional	requirements,	non-functional	requirements,	and	issues,	prioritized	in	order	of	importance	to	the	
business	and	dependencies	and	estimated.	The	precision	of	the	estimate	depends	on	the	priority	and	
granularity	of	the	Product	Backlog	item,	with	the	highest	priority	items	that	may	be	selected	in	the	next	
Sprint	being	very	granular	and	precise.	

Product	Owner	
The	person	responsible	for	managing	the	Product	Backlog	so	as	to	maximize	the	value	of	the	project.	The	
Product	Owner	is	responsible	for	representing	the	interests	of	everyone	with	a	stake	in	the	project	and	its	
resulting	product.	

Scrum	
Not	an	acronym,	but	mechanisms	in	the	game	of	rugby	for	getting	an	out-of-play	ball	back	into	play.	

Scrum	Master	
The	person	responsible	for	the	Scrum	process,	its	correct	implementation,	and	the	maximization	of	its	
benefits.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 32	

	

Sprint	Backlog	
A	list	of	tasks	that	defines	a	Team’s	work	for	a	Sprint.	The	list	emerges	during	the	Sprint.	Each	task	identifies	
those	responsible	for	doing	the	work	and	the	estimated	amount	of	work	remaining	on	the	task	on	any	given	
day	during	the	Sprint.	

Sprint	Backlog	Task	
One	of	the	tasks	that	the	Team	or	a	Team	member	defines	as	required	to	turn	committed	Product	Backlog	
items	into	system	functionality.	

Sprint	Planning	meeting	
A	one-day	meeting	time	boxed	to	eight	hours	(for	a	four	week	Sprint)	that	initiates	every	Sprint.	The	meeting	
is	divided	into	two	four-hour	segments,	each	also	time	boxed..	During	the	first	four	hours	the	Product	Owner	
presents	the	highest	priority	Product	Backlog	to	the	team.	The	Team	and	Product	Owner	collaborate	to	help	
the	Team	determine	how	much	Product	Backlog	it	can	turn	into	functionality	during	the	upcoming	Sprint.	
The	Team	commits	to	this	at	the	end	of	the	first	four	hours.	During	the	second	four	hours	of	the	meeting,	the	
Team	plans	how	it	will	meet	this	commitment	by	designing	and	then	detailing	its	work	as	a	plan	in	the	Sprint	
Backlog.	

Sprint	Retrospective	meeting	
A	time	boxed	three-hour	meeting	facilitated	by	the	Scrum	Master	at	which	the	complete	Team	discusses	the	
just-concluded	Sprint	and	determines	what	could	be	changed	that	might	make	the	next	Sprint	more	
enjoyable	or	productive.	

Sprint	Review	meeting	
A	time-boxed	four	hour	meeting	at	the	end	of	every	Sprint	where	the	Team	collaborates	with	the	Product	
Owner	and	stakeholders	on	what	just	happened	in	the	Sprint.	This	usually	starts	with	a	demonstration	of	
completed	Product	Backlog	items,	a	discussion	of	opportunities,	constraints	and	findings,	and	a	discussion	of	
what	might	be	the	best	things	to	do	next	(potentially	resulting	in	Product	Backlog	changes).	Only	completed	
product	functionality	can	be	demonstrated.	

Stakeholder	
Someone	with	an	interest	in	the	outcome	of	a	project,	either	because	they	have	funded	it,	will	use	it,	or	will	be	
affected	by	it.	

Team	
A	cross-functional	group	of	people	that	is	responsible	for	managing	themselves	to	develop	an	increment	of	
product	every	Sprint.		

Time	box	
A	period	of	time	that	cannot	be	exceeded	and	within	which	an	event	or	meeting	occurs.	For	example,	a	Daily	
Scrum	meeting	is	time	boxed	at	fifteen	minutes	and	terminates	at	the	end	of	fifteen	minutes,	regardless.	For	
meetings,	it	might	last	shorter.	For	Sprints,	it	lasts	exactly	that	length.	

	

	 	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 33	

	

ROLLING	OUT	AGILE	AT	A	LARGE	ENTERPRISE	
Gabrielle	Benefield	

Senior	Director	of	Agile	Development	at	Yahoo!	Inc.,	2007	

ABSTRACT	
Yahoo!	is	a	$50B	company	that	has	one	of	the	largest	Agile	implementations	in	the	world.	The	adoption	
of	Scrum	and	Agile	practices	has	been	steadily	growing	over	the	past	two	years,	and	now	encompasses	
more	than	150	Yahoo!	teams	and	more	than	1500	people	in	the	United	States,	Europe,	and	Asia-Pacific.	
The	projects	range	from	new	product	development	such	as	Yahoo!	Autos	to	heavy-duty	infrastructure	
work	on	Yahoo!	Mail	which	serves	250	million	users	each	month	around	the	globe.	

INTRODUCTION	
In	 the	highly	 competitive	 Internet	 space,	 getting	products	 to	market	quickly	while	being	both	 flexible	 and	
adaptive	to	change	is	critical.	Yahoo!	needed	a	process	that	supported	an	Internet	start-up	culture	within	the	
structure	of	providing	products	and	services	to	more	than	500	million	users	worldwide.	

BACKGROUND	
Yahoo!	went	from	being	a	small	start-up	and	grew	to	a	large	enterprise	company	quickly.		The	company	still	
seems	like	a	large	start-up	with	the	good	and	bad	that	comes	with	it.		The	things	people	liked	about	being	a	
start-up	was	working	closely	with	a	small	set	of	people,	being	able	to	quickly	get	products	to	market,	the	code	
base	 was	 relatively	 small	 and	 simple	 to	 work	 within	 and	 technical	 debt	 had	 not	 built	 up	 in	 it.	 	 The	
interdependencies	between	products	are	small	and	scaling	for	a	small	set	of	users	is	easy	to	deal	with	on	the	
backend	 and	 in	 the	 application	 layer.	 	 Standardization	 in	 brand,	 user	 interface	 and	 tools	 is	 fairly	
straightforward.		If	you	need	something	you	usually	know	who	to	go	to	and	how	to	find	them	to	get	things	done.		
It	is	also	very	exciting	as	you	ramp	up	quickly	and	the	money	starts	rolling	in.		As	a	company	grows	it	needs	to	
deal	with	the	complexity	of	many	moving	pieces,	more	people	who	you	don’t	know,	the	logistics	of	seating,	
feeding	and	making	thousands	of	employees	happy.		You	are	under	intense	public	scrutiny,	particularly	if	you	
are	a	Public	company.	 	Legal	concerns	heighten	and	if	anything	goes	wrong	the	effects	can	be	massive	and	
broad	reaching.		No	longer	can	you	simply	launch	a	product,	multiple	stakeholders	need	to	be	involved	in	the	
decision	making,	multiple	properties	may	be	affected	if	interconnected	in	the	Yahoo!	portal.		

It	is	very	hard	to	track	down	information	as	the	size	of	the	company	grows.		It	appears	to	be	a	natural	trend	for	
start-ups	that	grow	into	large	companies	to	hire	in	people	with	big	company	experience.	 	Sometimes	these	
people	can	add	a	lot	of	value,	sometimes	they	can	bring	in	overly	bureaucratic	processes	that	are	at	odds	with	
the	“just-get-things-done”	start-up	culture	which	drew	in	the	employees	in	the	first	place.		People	who	build	
systems	from	the	ground	up	have	a	lot	of	passion	and	ownership	and	aren’t	always	ready	to	share	and	the	
systems,	platforms	and	tools	put	in	place	to	service	one	set	of	needs,	that	of	a	small	company	no	longer	service	
hundreds	of	thousands,	sometimes	millions	of	users.		In	an	attempt	to	make	sense	of	scaling	pain	the	knee	jerk	
reaction	is	to	often	put	in	processes	to	manage	and	control	software	development.		Often	these	look	excellent	
on	 paper	 and	 in	 theory	 should	 work,	 unfortunately	 they	 can	 be	 at	 odds	 with	 the	 main	 ingredient	 in	
organizations,	people.			

Yahoo!	attempted	to	control	 the	software	development	process	and	released	a	waterfall	process	called	the	
“Product	Development	Process”	in	2002.		The	process	was	rolled	out	globally	and	the	use	of	it	was	mandatory.		
Unfortunately	for	the	creators	(or	perhaps	fortunately)	a	lot	of	teams	simply	ignored	the	process,	or	where	
they	couldn’t	 ignore	it	paid	lip	service	and	made	it	 look	like	they	adhered	to	the	steps.	 	The	teams	that	did	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 34	

	

follow	it	found	it	was	heavy,	slowed	them	down	and	added	little	real	value.		Management	felt	like	they	were	in	
control	but	the	teams	rebelled.		There	were	some	grass	roots	efforts	in	2004	to	try	out	some	Agile	practices	
such	as	Extreme	Programming	and	Scrum.	 	This	was	led	by	the	team	members	or	 in	one	case	by	a	smaller	
company	(Stata	Labs)	that	Yahoo!	acquired.		Tobias	Mayer,	an	engineer	on	a	team	started	a	small	grass	roots	
movement	to	spread	the	word	and	found	his	way	to	the	VP	of	Product	Development	at	the	time,	Pete	Deemer.		
Pete	to	his	credit	realized	that	the	heavy	weight	process	he	had	helped	rollout	was	not	succeeding	as	he	had	
hoped	and	was	curious	about	Agile.		Tobias	asked	Ellen	Salisbury,	an	engineering	leader	from	Stata	Labs	to	
give	an	internal	tech	talk	on	her	experiences.		The	talk	was	inspirational	and	piqued	peoples	interests.		In	a	
lucky	confluence	of	events,	Pete	happened	to	contact	Jeff	Sutherland	and	Ken	Schwaber	when	he	was	in	the	
Bay	Area	(where	Yahoo!’s	main	headquarters	are	located)	on	the	same	day	as	the	executive	team	had	an	offsite	
dinner.		Pete	invited	Jeff	to	be	a	guest	speaker	at	the	dinner	to	share	his	experiences	with	Scrum.		The	executive	
team	was	very	inspired	upon	hearing	his	research	that	they	decided	to	sponsor	a	pilot	program	on	the	spot.		
This	led	to	the	official	rollout	of	the	Scrum	pilot	program	in	February	of	2005.		

Pete	and	Tobias	evangelized	the	benefits	of	Scrum	amongst	their	contacts	and	managed	to	get	four	teams	to	
volunteer	to	try	Scrum	for	two	months	and	participate	in	a	survey	to	gather	data	about	their	experiences.	The	
teams	covered	a	broad	set	of	products	and	services	including	the	new	Yahoo!	Photos	3.0,	a	new	backend	for	
Yahoo!	Mail,	internal	tools	for	managing	small	business	sites	and	a	media	site	re-design.	A	subset	of	team	leads	
were	sent	to	a	Scrum	Master	class	with	Ken	Schwaber.	The	teams	used	a	very	standard	out-of-the-box	Scrum	
framework	to	address	prioritization	concerns,	self-organization	and	teamwork,	greater	customer	involvement	
and	incremental	product	releases.	At	this	stage	little	attention	was	put	on	technical	practices	as	Scrum	was	
seen	as	an	easy	first	step	to	test	the	waters.	At	the	end	of	their	first	month	of	using	Scrum	all	the	team	members	
and	their	managers	were	invited	to	participate	in	an	online	survey	to	anonymously	gather	their	feedback.	The	
responders’	received	a	custom	printed	Scrum	t-shirt	 for	participating,	which	also	served	a	dual	purpose	to	
promote	Scrum.	The	overall	response	rate	was	71%	(~85%	for	Scrum	Pilot	team	members).	The	questions	
asked	sought	to	track	and	collate	information	in	the	areas	that	Yahoo!	wanted	to	improve	upon	which	were	
mainly	qualitative	and	focused	on	the	human	aspects	of	software	development.	The	questions	asked	people	to	
rate	 their	 experiences	 against	 their	 previous	 process.		
	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 35	

	

	

	

	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 36	

	

	

	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 37	

	

	

	

the	feedback	was	positive;	the	teams	liked	the	process	and	experience,	and	management	saw	positive	results.	
Two	years	later	we	have	over	one	hundred	teams	spread	around	the	globe	and	we	continue	to	grow	rapidly.	

The	culture	at	Yahoo	is	very	much	like	a	large	start-up.	There	is	a	constant	stream	of	innovative	ideas	from	
every	department,	new	product	features	are	constantly	released,	and	the	company	strives	to	be	the	first	to	
market	with	new	services,	while	meeting	the	needs	of	our	users.	The	founders	still	work	at	the	company,	and	
have	remained	involved	in	day-to-day	activities.	They	continue	to	instill	in	all	employees	a	love	for	the	culture	
and	work.	The	company	is	committed	to	preserving	the	things	that	make	Yahoo!	great	while	putting	in	some	
process	and	practices	to	help	teams	deliver	better	products	faster;	this	was	the	greatest	challenge	we	faced	
when	introducing	Agile.	

We	started	with	Scrum,	implementing	small,	cross-functional	teams	to	address	organizational	issues,	highlight	
business	 priorities	 and	 most	 importantly,	 create	 a	 collaborative	 environment.	 Next	 we	 added	 in	 Agile	
engineering	practices	and	Lean	fundamentals	to	deliver	greater	business	value.	

KICK-OFF	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 38	

	

To	 kick	 off	 the	 program,	 we	 focused	 on	 building	 excitement	 internally,	 and	motivating	 employees	 to	 get	
involved.	We	invited	guest	speakers	like	Ken	Schwaber	and	Jeff	Sutherland,	the	inventors	of	Scrum	to	address	
employees,	and	had	a	new	employee	give	a	talk	on	her	experiences	with	Scrum	at	a	previous	company.	We	
were	 also	 fortunate	 to	 have	 the	 VP	 of	 Product	 Development	 evangelize	 the	 benefits	 of	 Scrum	 to	 the	 top	
executives	in	the	language	that	they	could	relate	to.	

Once	we	laid	the	ground	work	for	the	pilot	program	we	experimented	with	an	engagement	model	that	allowed	
us	to	coach	multiple	teams	efficiently.	Where	we	had	the	bandwidth	we	would	work	closely	with	teams	to	get	
them	up	and	running.	

We	 found	 it	worked	well	 to	 start	by	 spending	 some	 time	preparing	 the	Product	Backlog	with	 the	Product	
Owner,	then	train	the	whole	team	together.	A	coach	was	assigned	to	lead	the	first	Sprint	planning	meeting,	
stand-up,	Sprint	review	and	retrospective.	For	the	second	sprint	we	let	the	Scrum	Master	lead	the	team	and	we	
shadowed	them.	After	that,	depending	on	the	team,	we	would	do	drop-ins	and	try	to	keep	a	good	connection	
with	the	Product	Owner	and	Scrum	Master	to	help	guide	them	through	the	early	iterations.	At	this	point,	some	
teams	were	off	and	running,	while	others	with	difficult	issues	needed	some	additional	coaching.	We	also	found	
that	teams	unlearnt	things	over	extended	periods	of	time	so	we	stayed	in	contact	and	continually	re-engaged	
to	lead	some	master	retrospectives	and	give	them	objective	advice	and	coaching.	

We	found	an	evolutionary	approach	to	be	far	more	successful	than	a	revolutionary	one	for	 long	term	good	
results.		At	times	we	needed	to	push	the	envelope	and	take	risks	but	trying	to	rip	the	band-aid	off	too	quickly	
is	dangerous	and	can	lead	to	ultimate	failure.	For	us,	organizational	change	meant	getting	buy	in	at	all	levels,	
having	people	see	results	and	be	able	to	learn	in	a	safe	environment.	

MANAGEMENT	SUPPORT	
Agile	is	all	about	experimentation	and	the	ability	to	inspect	and	adapt	as	an	empirical	approach.	At	the	end	of	
the	day,	nothing	really	mattered	but	what	employees	actually	experienced	and	all	ideas	were	useless	unless	
we	executed	on	them	and	could	prove	that	they	worked.	One	thing	that	was	key	to	the	ongoing	funding	and	
success	 of	 the	 program	was	 a	 quarterly	 survey.	 The	 survey	was	 distributed	 to	 all	 the	 team	members	 and	
managers,	and	we	used	the	data	to	help	us	improve,	worked	with	teams	that	most	needed	it,	and	distributed	
the	data	back	to	management	(see	examples	of	the	questions	and	responses	at	the	end	of	this	report).		Over	
time	the	survey	became	less	useful	as	a	way	to	compare	Scrum	with	the	old	process	as	people	only	had	Scrum	
experience	at	the	company.		We	also	found	that	after	a	couple	of	surveys	people	didn’t	want	to	do	anymore,	so	
long	term	data	gathering	is	not	effective	using	a	survey	alone.	

EMPLOYEE	SUPPORT	
We	decided	to	keep	the	program	voluntary	and	still	do.	It	was	agreed	that	for	a	process	to	be	truly	successful	
it	needed	to	stand	on	its	own	merits.	Although	Agile	was	bought	in	from	the	top-down,	the	fact	that	the	program	
was	never	mandated	meant	it	had	bottom-up	support.	

While	we	built	relationships	at	all	levels	and	marketed	the	successes	to	the	management	team,	the	real	driving	
force	was	letting	the	word	spread	virally.	The	teams	using	Scrum	spread	the	word	about	the	process	and	people	
moving	 throughout	 the	 company	 seeded	 new	 teams.	 We	 leveraged	 the	 experiences	 of	 the	 people	 in	 the	
trenches	to	create	a	very	effective	promotion	engine.	

FEEDBACK	
We	tried	to	keep	a	lot	of	transparency	around	the	process	and	feedback	we	were	receiving.	We	gained	far	more	
credibility	by	being	open	and	letting	people	know	that	the	process	is	not	a	silver	bullet	and	acknowledging	that	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 39	

	

change	is	hard.	By	being	upfront	with	the	challenges	we	were	able	to	confront	difficult	issues	and	improve.	We	
had	panel	discussions	and	“tech	talks”	from	different	Scrum	teams	to	share	their	experiences,	the	challenges	
of	transitioning	to	Agile	and	how	they	dealt	with	issues.	A	core	tenet	of	Agile	is	around	transparency	and	we	
felt	this	should	also	go	for	the	methodology	itself.	

Top-down	mandates	that	tried	to	enforce	Scrum	practices	in	a	by-the-book	fashion	always	backfired	for	us,	as	
did	teams	that	followed	the	practices	so	zealously	they	lost	the	forest	for	the	trees.	We	did	have	teams	that	
simply	weren’t	ready	or	willing	to	use	Agile	and	we	had	to	respect	that;	we	didn’t	want	to	force	our	coaches	to	
be	the	process	police	and	become	part	of	the	problem.	

We	didn’t	get	too	hung	up	on	having	the	perfect	tracking	tools,	training	materials,	coaching	program,	etc.	in	
place.	We	made	a	lot	of	mistakes	but	we	also	improved	quickly	based	on	iterative	feedback.	Our	philosophy	
dictated	that	it	was	better	to	make	the	flight	than	have	our	bags	packed	perfectly	and	still	be	waiting	on	the	
ground.	

ROLL-OUT	
To	kickoff	an	enterprise	Agile	rollout,	we	found	it	really	helped	to	have	people	with	real	experience	in	the	field.	
The	foundation	of	the	overall	strategy	was	built	on	lessons	learned	and	understanding	how	to	deal	with	change.	
We	built	out	a	centralized	team	of	coaches	who	were	passionate	and	good	at	building	relationships.	

The	team	had	a	mixture	of	skills	including	Product	management,	QA,	Design,	Extreme	Programming,	Scrum	
and	Lean.	It	was	useful	to	have	people	with	specializations	in	additional	to	generalized	coaching	so	they	could	
build	bridges	into	different	functional	groups.	Personality	was	also	key.	We	needed	people	with	passion	and	
enthusiasm,	as	we	were	only	as	good	as	 the	 relationships	we	could	 form.	Having	people	who	were	overly	
zealous	or	abrasive	would	have	quickly	bought	the	program	to	a	halt.	One	important	aspect	of	hiring	was	to	
find	people	with	strong	skills	in	collaboration	and	building	consensus.	

Next	 we	 found	 that	 the	 best	 Agile	 champions	 were	 the	 people	 already	 in	 the	 teams,	 from	 all	 levels	 and	
disciplines.	These	people	knew	the	context	and	the	challenges	of	their	particular	situation	and	could	adjust	the	
process	to	meet	their	team’s	needs.	Finding	good	people	who	really	get	it	and	training	them	up	to	help	their	
own	team	is	one	of	the	differentiators,	and	is	the	only	way	to	scale	effectively	in	a	large	organization.	

CHALLENGES	
Managers	often	feel	left	out	when	the	team	becomes	more	self-organized	and	don’t	know	how	to	transition	
from	the	traditional	command	and	control	model	to	one	of	a	strategic	and	supportive	leader.	They	sometimes	
lash	out	or	subvert	the	process	out	of	fear.	Where	we	came	across	people	who	are	anti-Agile,	we	tried	to	get	
them	 to	understand	 their	 changed	role	and	 to	give	 them	some	responsibility.	Training	and	coaching	 these	
people	is	worth	the	investment.	We	also	did	have	to	deal	with	the	reality	that	not	everyone	is	willing	or	can	
change	and	ultimately	the	new	environment	may	no	longer	be	a	good	fit	for	them	anymore.	

We	wanted	people	to	participate	in	the	surveys	but	after	a	couple	of	rounds	they	were	bored	with	having	to	fill	
out	survey	information	all	over	again.	So	we	offered	free	t-shirts.	These	weren’t	any	old	t-shirt,	they	were	cool.	
We	didn’t	even	brand	them	as	the	sheer	ambiguity	was	very	appealing	and	people	would	be	curious	to	know	
what	the	t-shirts	meant	and	this	would	open	some	doors	for	us.	We	had	people	signing	up	to	try	Scrum	just	to	
get	a	t-shirt.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 40	

	

Another	challenge	we	had	and	still	have	to	some	extent	is	to	keep	to	the	key	tenets	of	Scrum	while	adapting	to	
different	contexts.	Scrum	provides	an	extremely	flexible	framework	and	how	you	apply	it	is	an	open-ended	
question.	

We	have	a	very	strong	and	brilliant	design	group	at	Yahoo!	Our	products	are	heavily	consumer	focused	so	
design	 is	 very	 important	 to	 us.	 The	Designers	 initial	 reaction	 to	Agile	was	 similar	 to	 the	way	 engineering	
architects	react	when	faced	with	the	idea	that	you	don’t	design	everything	up	front	that	you	constantly	re-
factor	and	that	requirements	will	change.	

Working	to	understand	the	challenges	and	finding	common	ground	helped	improve	the	situation.	There	are	
some	things	that	do	fit	with	design	thinking.	Designers	do	want	to	adapt	and	work	incrementally.	User	stories	
that	are	focused	on	the	customer	are	also	warmly	greeted.	Lean	thinking	in	keeping	the	features	to	a	minimum	
and	doing	them	well	also	strikes	a	positive	note.	

We	tried	to	be	flexible,	to	listen	to	the	design	viewpoint	and	to	help	the	whole	team	find	a	way	to	work	together	
in	a	way	that	made	sense	to	them.	If	the	whole	team	was	not	able	to	find	common	ground	that	worked	at	the	
expense	of	key	members	the	holistic	team	did	not	succeed.	

We	allowed	the	teams	to	find	a	way	to	work	within	the	Agile	framework	that	suited	their	context	and	needs,	
using	Scrum	as	a	flexible	framework.	We	have	teams	that	do	overlap	work	within	each	iteration,	where	some	
design	 is	 done	 looking	 forward	 to	 the	 next	 iteration,	 some	 user	 testing	 of	 work	 completed	 in	 a	 previous	
iteration,	and	handoffs	during	the	iteration	occur.	This	may	not	look	like	pure	Scrum	but	it	works	for	teams	
developing	consumer	facing	products	and	Ken	Schwaber	has	always	tried	to	get	across	the	values	rather	than	
the	rules	of	Scrum	so	we	took	this	very	much	to	heart.	If	we	tried	to	enforce	only	working	on	tasks	for	the	
current	iteration	during	the	current	iteration	the	designers	would	have	mutinied	and	the	team	collaboration	
would	have	suffered.	Again,	Scrum	is	adaptive	and	if	it	works	for	people	they	keep	doing	it.	

We	have	found	though	that	the	number	one	reason	designers	like	Agile	is	the	collaboration	aspect.	If	the	team	
spirit	 is	 strong	 and	 collaboration	 between	 team	 members	 is	 working	 they	 can	 overcome	 the	 logistical	
difficulties	as	they	work	together.	

TRAINING	
It	was	and	still	is	extremely	challenging	to	get	executives	and	senior	managers	to	Scrum	training	due	to	their	
busy	schedules,	but	it	is	also	invaluable	and	worth	the	investment.	One	General	Manager	took	a	two	day	Scrum	
Master	class	with	his	team	and	said	it	was	a	great	experience.	He	got	to	hear	the	tough	challenges	and	issues	
the	team	were	facing	while	the	team	got	a	lot	of	insight	into	the	business	challenges	and	vision.	This	established	
a	healthy	base	for	ongoing	two-way	conversations.	The	manager	bought	a	lot	of	credibility	for	investing	time	
to	sit	and	learn	in	the	same	room	as	everyone	else.	

Even	though	we	had	great	internal	coaches,	we	were	very	understaffed.	We	realized	that	having	great	people	
like	Mike	Cohn,	Ken	Schwaber,	Jeff	Sutherland,	Mary	and	Tom	Poppendieck	was	crucial	to	getting	the	program	
off	 the	 ground.	 It	 is	 worth	 spending	 the	money	 on	 consultants	 if	 you	 lack	 internal	 expertise	 as	 they	 can	
ultimately	save	the	company	money	if	you	apply	them	wisely.	

NEXT	TIME	
The	Agile	Development	team	at	Yahoo!	approached	the	strategy	with	pragmatism	and	adaptability,	and	has	
experienced	great	success	with	the	program.	Nevertheless,	there	are	always	things	you	can	change,	including	
dedicating	 more	 resources	 and	 funding	 to	 the	 project,	 but	 until	 we	 could	 prove	 the	 process	 worked	 the	
business	was	not	going	to	invest	a	lot.	The	whole	process	has	been	and	still	is	all	about	learning	and	adapting	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 41	

	

as	we	go.	The	failures	propelled	us	to	new	levels	and	it	was	important	to	allow	teams	to	understand	that	failure	
is	in	itself	an	effective	learning	mechanism.	

FUND	THE	INTERNAL	COACHING	TEAM	ADEQUATELY	
It	would	have	been	great	to	have	the	internal	coaching	team	staffed	adequately	so	we	could	get	a	good	scaling	
strategy	in	place	earlier.	I	was	working	by	myself	for	a	period	of	time,	and	the	group	only	had	two	full	time	
coaches	consistently	for	the	first	year.	We	put	new	meaning	to	the	term	“lean”.	It	took	a	long	time	to	get	more	
resources	assigned	to	the	central	coaching	team	and	this	only	came	after	financial	analysis	helped	to	prove	
each	 coach’s	 value	 (around	 1.4	 million	 dollars	 saved	 per	 year	 for	 each	 coach	 helping	 10	 teams	 be	 more	
productive).	This	would	have	made	a	lot	more	teams	a	lot	more	successful	and	we	could	have	scaled	faster	and	
better	with	additional	resources.	

ENCOURAGE	DEEPER	ENGAGEMENT	FROM	COACHING	STAFF	
It	would	have	been	preferable	to	coach	teams	more	intensely	rather	than	being	so	broadly	focused.	Due	to	
constrained	resources	and	huge	demand	it	was	impossible	to	work	as	deeply	with	teams	as	we	would	have	
liked,	and	this	showed	very	clearly	in	the	survey	results.	The	teams	with	adequate	coaching	showed	productivity	
increases	of	2-3	times	more	than	teams	trying	to	work	by	themselves.	

There	 are	 teams	 that	 kicked	 off	 by	 attending	 a	 public	 class	 and	 had	 no	 follow-up	 coaching,	 due	 to	 either	
bandwidth	restrictions	or	not	realizing	the	value	of	it.	We	sometimes	run	into	these	teams	or	hear	about	them	
through	the	grapevine	and	find	out	they	are	not	really	doing	Scrum	at	all	but	a	hybrid	that	allows	them	to	
continue	 their	 dysfunctional	 practices	while	 calling	 it	 Scrum.	This	 is	 a	major	 problem	 so	now	when	 teach	
classes	we	stress	the	importance	of	coaching.	

It	would	have	also	been	great	 to	have	solid	engineering	coaches	available	 from	day	one	 to	work	with	new	
teams,	 helping	 them	 set	 up	 build	 and	 test	 systems	 and	 introducing	 Agile	 engineering	 concepts.	 It	 is	 very	
challenging	to	deliver	incremental	products	without	good	engineering	discipline	and	this	has	definitely	held	
back	the	productivity	and	quality	of	many	of	our	teams.	

DEEPER	MANAGEMENT	INVOLVEMENT	
We	could	have	pushed	harder	to	get	senior	management	to	attend	focused	training.	Having	only	a	shallow	
understanding	has	lead	to	misunderstandings	that	could	have	been	avoided	if	we	had	been	able	to	do	more	of	
this.	Again,	in	an	ideal	world	with	more	resources	we	could	have	done	more	targeted	training	for	management,	
product	management,	QA	and	design	to	better	integrate	them	into	the	collective	team	spirit.	We	are	currently	
working	towards	this.	

FOCUS	ON	THE	MAJORITY	
It	is	a	given	that	not	everyone	will	be	happy	in	every	situation.	We	found	in	the	process	of	introducing	Scrum	
to	Yahoo!	that	we	did	have	people	who	were	very	negative	towards	our	efforts.	Fear,	control	and	politics	are	
constantly	challenging	and	we	had	to	simply	realize	we	weren’t	always	going	to	make	friends.	People	will	react	
to	the	changes	and	if	they	didn’t,	you	would	probably	be	telling	them	what	they	wanted	to	hear,	not	perhaps	
what	they	need	to	hear.	

CONCLUSION	
Although	we	have	over	100	teams	at	Yahoo!,	we	still	have	a	 long	way	to	go.	Some	days	 it	 feels	 like	we	are	
winning	and	Agile	is	spreading	its	love	over	the	whole	company,	other	days	teams	revert	to	bad	practices	and	
new	blocks	appear	that	feel	impossible	to	break	through.	Some	teams	are	very	Agile,	others	do	mini-waterfalls	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 42	

	

and	call	it	Agile.	Change	is	difficult,	and	to	change	a	company	as	large	as	Yahoo!	sometimes	feels	like	trying	to	
steer	the	Titanic	with	a	small	paddle.	We	learned	that	patience	is	important,	as	is	remembering	that	even	the	
smallest	of	incremental	improvements	have	a	massive	payoff	when	you	do	them	at	large	scale.	

RESULTS	FROM	SCRUM	
The	benefits	of	Scrum	reported	by	teams	come	in	various	aspects	of	their	experience.	Once	each	quarter,	we	
surveyed	everyone	at	Yahoo!	using	Scrum	(including	Product	Owners,	Team	Members,	Scrum	Masters,	and	the	
functional	managers	of	those	individuals)	and	ask	them	to	compare	Scrum	to	the	approach	they	were	using	
previously.	Below	are	some	results	from	our	previous	surveys:	

•	Productivity:	68%	of	respondents	reported	Scrum	is	better	or	much	better	(4	or	5	on	a	5-point	scale);	5%	
reported	Scrum	is	worse	or	much	worse	(1	or	2	on	a	5-point	scale);	27%	reported	Scrum	is	about	the	same	(3	
on	a	5-point	scale).	

•	Team	Morale:	52%	of	respondents	reported	Scrum	is	better	or	much	better;	9%	reported	Scrum	is	worse	or	
much	worse;	39%	reported	Scrum	is	about	the	same.	

•	Adaptability:	63%	of	respondents	reported	Scrum	is	better	or	much	better;	4%	reported	Scrum	is	worse	or	
much	worse;	33%	reported	Scrum	is	about	the	same.	

•	Accountability:	62%	of	respondents	reported	Scrum	is	better	or	much	better;	6%	reported	Scrum	is	worse	
or	much	worse;	32%	reported	Scrum	is	about	the	same.	

•	Collaboration	and	Cooperation:	81%	of	respondents	reported	Scrum	is	better	or	much	better;	1%	reported	
Scrum	is	worse	or	much	worse;	18%	reported	Scrum	is	about	the	same.	

•	Team	 productivity	 increased	 an	 average	 a	 37%	 increase,	 based	 on	 the	 estimates	 of	 the	 Product	
Owners.	

•	86%	of	team-members	stated	that	they	would	continue	using	Scrum	if	the	decision	were	solely	up	to	
them.	

	

Contact:	Gabrielle	Benefield	(gbenefield@gmail.com)	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 43	

	

CAPTURING	EXTREME	BUSINESS	VALUE:	1000%	ANNUAL	RETURN	ON	INVESTMENT	IN	
SCRUM	TRAINERS	
Jeff	Sutherland,	Ph.D.,	PatientKeeper,	Inc.,	2007	

ABSTRACT
In	2005,	Jeff	Sutherland	worked	together	with	Peter	Deemer	at	Yahoo!	to	brief	the	Yahoo!	senior	management	
team	on	Scrum.	After	senior	management	made	the	decision	to	move	forward	with	Scrum,	a	productivity	analysis	
of	rollout	of	Scrum	at	a	previous	 large	enterprise	(IDX	Systems,	now	GE	Healthcare)	was	used	to	calculate	an	
annual	ROI	of	1000%	on	a	three	year	rollout	of	Scrum	at	Yahoo!	After	two	years	of	deployment	and	Scrum	rollout	
to	over	100	teams	the	rate	of	return	at	Yahoo!	for	investment	in	each	internal	Scrum	trainer	was	$1.4	based	on	
training	of	10	teams	annually	per	trainer,	or	roughly	1000%	return	on	investment	.	Teams	coached	by	a	Scrum	
trainer	achieved	3-4	times	the	productivity	gains	of	uncoached	teams	[27]	.	

INTRODUCTION
The	internal	rate	of	return	on	investment	in	Scrum	training	is	quite	high.	Many	companies	have	doubled	the	
rate	of	software	production	on	the	average	for	all	teams	measured.	Recently	a	CMMI	Level	5	company	cut	the	
costs	of	software	projects	in	half	and	reduced	measured	defects	by	40%	while	still	maintaining	CMMI	Level	5	
compliance	for	all	projects	[20].	Even	the	best	companies	will	radically	improve	performance	by	introducing	
Scrum	and	some	will	achieve	far	more	than	1000%	rate	of	return	on	investment	in	Scrum	training.	

This	paper	addresses	the	ROI	on	Scrum	training	for	the	average	large	company	with	thousands	of	employees	
and	hundreds	or	 thousands	of	developers.	These	 companies	have	established	heavyweight	processes	over	
many	years	that	are	bureaucratic	and	loaded	with	waste.	While	on	the	surface	it	would	appear	easy	to	provide	
substantial	gains	by	eliminating	the	most	obvious	sources	of	inefficiency,	introducing	a	radically	new	process	
company	wide	can	be	slow	and	painful.	Scrum	has	a	systematic	continuous	quality	improvement	process	that	
identifies	and	prioritizes	companywide	impediments	to	progress.	

IDX SYSTEMS (NOW GE HEALTHCARE): SCALING SCRUM FOR THE FIRST TIME
During	the	summer	of	1996,	IDX	Systems	(now	GE	Healthcare)	hired	Jeff	Sutherland	as	senior	VP	of	engineering	
and	product	development.	IDX	had	over	4,000	customers	and	was	one	of	the	largest	US	healthcare	software	
companies,	with	hundreds	of	developers	working	on	dozens	of	products.	Here	was	an	opportunity	to	extend	
Scrum	to	large-scale	development.	

The	approach	at	IDX	was	to	organize	the	entire	development	group	into	an	interlocking	set	of	Scrums.	While	
this	was	the	first	large	development	team	to	try	this	approach,	the	strategy	has	now	been	executed	many	times	
and	documented	by	Ken	Schwaber	in	“Scrum	in	the	Enterprise”	[28].	Every	part	of	the	organization	was	team	
based,	 including	the	management	team,	which	included	two	vice	presidents,	a	senior	architect,	and	several	
directors.	Front-line	Scrums	met	daily.	A	Scrum	of	Scrums,	which	included	the	team	leaders	of	each	Scrum	in	a	
product	line,	met	weekly,	The	management	Scrum	met	monthly.	

The	key	learning	at	IDX	was	that	Scrum	scales	to	any	size.	With	dozens	of	teams	in	operation,	the	most	difficult	
problem	was	ensuring	the	quality	of	the	Scrum	process	in	each	team,	particularly	when	the	entire	organization	
had	to	learn	Scrum	all	at	once.	IDX	was	large	enough	to	bring	in	productivity	experts	to	monitor	throughput	on	
every	project.	While	most	teams	were	only	able	to	double	the	industry	average	in	function	points	per	month	
delivered,	several	teams	moved	into	a	hyperproductive	state,	producing	deliverable	functionality	at	four	to	five	
times	the	industry	average.	These	teams	became	shining	stars	in	the	organization	and	examples	for	the	rest	of	
the	organization	to	follow.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 44	

	

One	of	the	most	productive	teams	at	IDX	was	the	Web	Framework	team	that	built	a	web	frontend	infrastructure	
for	all	products.	The	infrastructure	was	designed	to	host	all	IDX	applications,	as	well	as	seamlessly	interoperate	
with	 end	 user	 or	 third	 party	 applications.	 The	Web	 Framework	 was	 created	 by	 a	 distributed	 team	 with	
developers	 in	 Boston,	 Seattle,	 and	 Vermont	 who	 met	 by	 teleconference	 in	 a	 daily	 Scrum	 meeting.	 The	
geographic	 transparency	 of	 this	model	 produced	 the	 same	high	 performance	 as	 co-located	 teams	 and	has	
become	the	signature	of	hyperproductive	distributed/outsourced	Scrums	at	Xebia	in	the	Netherlands/India	
and	Exigen	Services	in	United	States/Russia	[29].		

The	quality	of	software	of	many	of	the	hyperproductive	Scrum	teams	can	be	extraordinarily	high.	The	IDX	Web	
Framework	was	first	deployed	in	1997	and	in	2007	was	selected	as	the	core	web	technology	for	GE	Healthcare	
systems.	However,	very	few	of	the	IDX	software	teams	achieved	the	hyperproductive	state.	On	the	average,	
based	on	function	point	analysis	by	Capers	Jones	company,	Software	Productivity	Research,	IDX	only	achieved	
average	productive	gains	of	240%,	primarily	due	to	loss	of	production	because	of	large	Scrum	teams,	up	to	15	
people	in	size.	It	is	well	understood	today	that	these	large	teams	cause	significant	loss	in	productivity	and	make	
it	impossible	to	achieve	linear	scalability,	one	of	the	key	features	of	well-executed	Scrum	implementations	in	
the	best	Scrum	companies.	

SUMMARY OF PRODUCTIVITY GAINS AT IDX
The	budget	of	the	IDX	development	organization	was	almost	$50M	per	year	and	this	was	sufficient	size	to	a	
detailed	 analysis	 of	 baseline	 productivity	 before	 Scrum	 and	 productive	 gains	 generated	 by	 Scrum.	 An	
independent	consulting	firm,	Software	Productivity	Research	(SPR),	was	hired	to	do	function	point	analysis	of	
every	IDX	software	product.	Jeff	Sutherland	had	worked	with	Capers	Jones	[30],	the	founder	of	SPR,	during	the	
original	creation	of	Scrum	and	wanted	to	compare	the	productivity	goals	designed	into	the	Scrum	process	with	
actual	 performance	 in	 the	 field.	 	 Some	 of	 the	 IDX	 products	were	 sized	 at	 over	 12000	 function	 points,	 the	
equivalent	 of	 over	 a	million	 lines	 of	 Java	 or	 C#	 code	 and	 the	 smaller	 products	were	 typically	 5000-6000	
function	points.	 Applications	were	 financial	 and	 clinical	 products	 for	 operating	hospitals	 and	 independent	
physician	groups	at	thousands	of	sites.	Implementation	platforms	varied	from	Mumps	to	Cobol	to	Java	and	the	
latest	Microsoft	tools	and	languages	available.	

Function	 points	 were	 chosen	 as	 an	 industry	 standard	 measure	 that	 was	 independent	 of	 the	 software	
development	 language	 and	 environment.	 This	 was	 to	 ensure	 realistic	 comparison	 of	 productivity	 across	
technologies	 and	 development	 teams,	 as	 well	 as	 comparability	 with	 external	 industry	 data.	 External	
professional	experts	were	hired	to	calculate	function	points	in	order	to	provide	research	quality	data.	Function	
points	 are	not	 easy	 calculated	by	 the	 average	development	 team	and	not	 recommended	as	 an	operational	
strategy.	Story	points	have	emerged	as	industry	best	practice	for	measuring	Agile	development	team	velocity	
[31].	They	are	easily	calculated	and	useful	for	release	planning.	However,	they	are	not	comparable	across	teams	
or	 across	 companies	 so	 were	 not	 suitable	 for	 research	 data	 on	 the	 first	 deployment	 of	 Scrum	 in	 a	 large	
enterprise.	

At	every	release	point	for	every	product,	the	number	of	function	points	was	recalculated	to	reflect	the	new	
features	by	Software	Productivity	Research	consultants.	The	increase	in	function	points	was	divided	by	person	
months	 for	 the	 fully	 burdened	 development	 teams	 including	 design,	 coding,	 testing,	 administrative,	 and	
management	staff.	Initial	velocity	of	all	development	teams	was	industry	average	at	2-3	function	points	per	
staff	month.	

Some	 teams	 accelerated	 into	 a	 hyperproductive	 state	 using	 Scrum,	 achieving	 5-10	 times	 industry	 average	
performance.	These	teams	were	about	10%	of	the	organization	and	achieved	an	average	productivity	increase	
of	666%.	A	small	number	of	 teams	(less	 than	5%)	experienced	 failures	 for	either	personnel	or	 technology	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 45	

	

reasons.	Occasionally,	a	team	would	not	be	able	to	work	together	effectively	and	was	reorganized	or	disbanded,	
usually	during	the	first	Sprint.	Less	frequently,	a	high	performance	team	had	taken	a	calculated	risk	on	new	
technologies	(always	approved	by	management)	and	technical	failure	of	some	Sprints	was	anticipated	(even	
encouraged)	in	order	to	gain	a	technology	lead	in	the	market.	There	were	no	failures	of	large	projects,	only	
failure	to	deliver	software	in	isolated	Sprints	or	a	short	series	of	Sprints.	In	the	case	of	team	failures,	the	teams	
were	always	 reformed.	 In	 the	 case	of	 technology	 failures,	 efforts	were	 redoubled	 in	 subsequent	Sprints	 to	
overcome	research	and	development	challenges.	

The	remaining	85%	of	teams	achieved	an	average	velocity	of	5-6	function	points	per	staff	month,	averaging	a	
100%	gain.	The	net	productivity	gain	of	all	teams	combined	was	240%.	This	was	viewed	as	a	failure	to	achieve	
Toyota	level	performance.	However,	it	was	a	good	first	start	for	enterprise	wide	deployment	of	Scrum.	

It	 is	 important	 to	 note	 that	 these	 productivity	 gains	 were	 achieved	 at	 a	 sustainable	 pace	 with	 increased	
employee	retention	and	enhanced	ability	to	hire	the	best	people	in	the	software	industry	due	to	the	high	quality	
working	environment	provided	by	Scrum	for	developers.	The	hyperproductive	teams	were	always	the	most	
spirited	 teams	 who	 loved	 their	 jobs	 and	 worked	 closely	 together	 like	 a	 professional	 sports	 team.	
Hyperproductivity	 is	 not	 achieved	 by	 working	 harder,	 but	 only	 by	 working	 better	 through	 intense	
communication,	mutual	support,	and	an	“effortless”	skill	that	makes	hard	things	look	easy.	Think	of	Michael	
Jordan	going	up	for	a	basketball	shot.	The	team	has	set	him	up	and	the	shot	often	looks	so	smooth	and	easy	it	
generates	exhilaration	in	both	the	players	and	the	spectators.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 46	

	

CHAPTER	2:	THE	FIRST	SCRUM	
Scrum	 was	 derived	 from	 best	 practices	 in	 the	 Japanese	 auto	 and	 consumer	 products	 industry	 at	 Easel	
Corporation	in	1993.	The	story	of	the	first	Scrum	was	published	by	the	Cutter	Agile	Advisory	Service	outlining	
lessons	learned	on	the	first	Scrum	[22].	

Senior	management	support	is	very	helpful	in	implementing	Scrum	and	at	Easel,	the	CEO	agreed	to	use	Scrum	
for	the	first	time	on	the	most	critical	project	in	the	company.	Scrum	was	designed	to	take	the	toughest	project	
and	turn	it	into	a	success.	It	would	never	have	begun	without	the	support	of	the	Easel	CEO.	How	do	you	sell	
Scrum	to	management	without	any	past	experience	or	references	to	rely	upon?		

In	1993,	 the	1986	paper	 in	 the	Harvard	Business	Review	by	Takeuchi	 and	Nonaka	 [1]	 combined	with	 the	
Coplien	 paper	 on	 the	 development	 of	 Quattro	 for	Windows	 at	 Borland	 [2]	 triggered	 the	 first	 daily	 Scrum	
meetings	and	the	monthly	Sprint	cycle.	Japanese	best	practices	in	new	product	development	at	Honda	and	Fuji-
Xerox	reminded	Takeuichi	and	Nonaka	of	the	Scrum	formation	in	Rugby.	It	would	take	more	than	these	papers	
to	convince	a	CEO	under	pressure	to	approve	a	new	process	he	had	never	seen	before.	What	were	the	key	
arguments?	

Today,	there	are	ROI	analyses,	experience	reports,	success	stories,	and	lean	manufacturing	practices	that	help	
make	a	 compelling	 case	 for	 selecting	 Scrum.	Toyota	has	 emerged	as	 the	 leading	 Japanese	 example	of	 lean	
product	development.	Many	publications	document	Toyota’s	process	which	achieves	4	times	the	productivity	
and	12	times	the	quality	of	a	typical	U.S.	competitor.	This	is	what	can	be	expected	from	a	high	quality	Scrum	
implementation	in	software	development.	As	a	result	OpenView	Ventures	Partners	asked	senior	management	
teams	in	all	of	their	portfolio	companies	to	start	learning	about	Scrum	by	reading	the	“Toyota	Way”	[14].	

Scrum	training	was	significantly	upgraded	in	2016	by	the	joint	venture	ScrumInc	Japan	who	are	the	trainers	
for	Toyota	Corporate	at	Toyota	City.	The	new	training	includes	four	components:	(1)	the	Scrum	Guide,	(2)	lean	
tools	and	techniques,	 (3)	hyperproductive	patterns	 from	The	Scrum	Book:	The	Spirit	of	 the	Game,	and	the	
Scrum@Scale	 Guide.	 ScrumInc	 Japan	 was	 founded	 by	 Scrum	 Inc	 and	 KDDI,	 one	 of	 the	 largest	 telecom	
companies	in	Japan	that	is	20%	owned	by	Toyota.	

In	addition,	there	are	two	excellent	publications	for	management	of	Scrum	companies	that	have	been	added	
to	the	original	Takeuchi	and	Nonaka	paper	in	the	Harvard	Business	Review	–	Embracing	Agile:	How	to	
master	the	process	that’s	transforming	management	by	Darrell	Rigby,	Jeff	Sutherland,	and	Hirotaka	Takeuchi	
and	Agile	at	Scale	by	Darrell	Rigby,	Jeff	Sutherland,	and	Andy	Noble	(May-June	2016).	

Agile	 at	 Scale	 is	 also	 featured	 in	HBR's	 10	Must	Reads	on	Change	Management,	Vol.	 2	 (with	bonus	 article	
"Accelerate!"	by	 John	P.	Kotter)	by	Harvard Business Review, 	John P. Kotter, 	Tim Brown, 	Roger L.
Martin, 	Darrell K. Rigby	

	

	

	

	 	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 47	

	

AGILE	DEVELOPMENT:	LESSONS	LEARNED	FROM	THE	FIRST	SCRUM	
Jeff	Sutherland,	Ph.D.,	PatientKeeper,	Inc.,	2004	

INTRODUCTION
Scrum	for	software	development	teams	was	developed	at	Easel	Corporation	in	1993,	where	we	built	the	first	
object-oriented	 design	 and	 analysis	 (OOAD)	 tool	 that	 incorporated	 round-trip	 engineering.	 In	 a	 Smalltalk	
development	environment,	code	was	auto-generated	from	a	graphic	design	tool	and	any	changes	to	the	code	
from	the	Smalltalk	integrated	development	environment	(IDE)	were	immediately	reflected	back	into	design.		

Since	the	product	was	directed	toward	enterprise	software	development,	we	spent	a	lot	of	time	analyzing	best	
practices	in	software	development	methodologies.	

REVIEWING SOFTWARE DEVELOPMENT PROCESSES
We	realized	we	needed	a	development	process	that	fit	an	enhanced	version	of	rapid	application	development,	
where	visualization	of	design	could	result	immediately	in	working	code.	This	led	to	an	extensive	review	of	both	
the	literature	and	the	real	experience	from	leaders	of	hundreds	of	software	development	projects.		

There	 were	 some	 key	 factors	 that	 influenced	 the	 introduction	 of	 Scrum	 at	 Easel	 Corporation.	 “Wicked	
Problems,	 Righteous	 Solutions”	 [32]	 reviewed	 the	 reasons	 why	 the	 waterfall	 approach	 to	 software	
development	does	not	work.		

• Requirements	are	not	fully	understood	before	the	project	begins,		

• Users	know	what	they	want	only	after	they	see	an	initial	version	of	the	software,	

• Requirements	change	often	during	the	software	construction	process,		

• And	new	tools	and	technologies	make	implementation	strategies	unpredictable.		

DeGrace	and	Stahl	reviewed	“All-at-Once”	models	of	software	development	that	uniquely	fit	object-oriented	
implementation	of	software	and	help	resolve	these	challenges.	

“All-at-Once”	models	assume	that	the	creation	of	software	is	done	by	simultaneously	working	on	requirements,	
analysis,	design,	coding,	and	testing,	then	delivering	the	entire	system	all	at	once.	The	simplest	“All-at-Once”	
model	is	a	single	super-programmer	creating	and	delivering	an	application	from	beginning	to	end.	All	aspects	
of	the	development	process	reside	in	one	person’s	head.	This	is	the	fastest	way	to	deliver	a	product	that	has	
good	internal	architectural	consistency	and	is	the	“hacker”	model	of	implementation.	For	example,	in	a	project	
before	the	first	Scrum,	a	single	 individual	spent	two	years	writing	every	line	of	code	for	the	Matisse	object	
database	used	 to	drive	$10B	nuclear	reprocessing	plants	worldwide.	At	 less	 than	50,000	 lines	of	code,	 the	
nuclear	engineers	 said	 it	was	 the	 fastest	and	most	 reliable	database	ever	benchmarked	 for	nuclear	plants.	
Brooks	has	documented	a	variant	of	this	approach	called	the	Surgical	Team,	which	IBM	has	shown	to	be	their	
most	productive	software	development	process	[33].	

The	Surgeon	or	super-programmer	approach	has	the	fatal	flaw	that	there	are	at	most	one	or	two	individuals	
even	in	a	large	company	that	can	execute	this	model.	For	example,	it	took	years	for	a	leading	team	of	developers	
to	understand	 the	 conceptual	 elegance	of	 the	Matisse	object	 server	 technology	enough	 to	maintain	 it.	 The	
single-programmer	model	does	not	scale	well	to	large	projects.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 48	

	

The	next	level	of		“All-at-Once”	development	is	handcuffing	two	programmers	together,	as	in	pair	programming	
in	 the	eXtreme	Programming	paradigm	[24].	Here,	 two	developers	working	at	 the	same	 terminal	deliver	a	
component	 of	 the	 system	 together.	 This	 has	 been	 shown	 to	deliver	 better	 code	 (usability,	maintainability,	
flexibility,	 extendibility)	 faster	 than	 two	 developers	working	 individually	 [34].	 The	 challenge	 is	 achieve	 a	
similar	productivity	effect	with	more	than	two	people.	What	is	the	best	way	to	work	with	multiple	teams	of	
people	on	large	software	projects?	

Our	 scalable,	 team-based	 “All-at-Once”	 model	 was	 motivated	 by	 the	 Japanese	 approach	 to	 new	 product	
development.	We	were	already	using	an	iterative	and	incremental	approach	to	building	software	[35].	It	was	
implemented	in	slices	in	which	an	entire	piece	of	fully	integrated	functionality	worked	at	the	end	of	an	iteration.	
What	 intrigued	us	was	Takeuchi	and	Nonaka’s	description	of	 the	 team-building	process	 for	setting	up	and	
managing	a	Scrum	[1].	The	idea	of	building	a	self-empowered	team	in	which	everyone	had	the	global	view	of	
the	product	on	a	daily	basis	seemed	like	the	right	idea.	The	approach	to	managing	the	team,	which	had	been	so	
successful	 at	Honda,	 Canon,	 and	 Fujitsu,	 also	 resonated	with	 the	 systems	 thinking	 approach	 promoted	 by	
Professor	Senge	at	MIT	[16].	

We	 were	 prodded	 into	 setting	 up	 the	 first	 Scrum	 meeting	 after	 reading	 Coplien’s	 paper	 on	 Borland’s	
development	of	Quattro	Pro	for	Windows	[2].	The	Quattro	team	delivered	one	million	lines	of	C++	code	in	31	
months	with	a	4-person	staff	that	later	grew	to	8.	This	was	about	1,000	lines	of	deliverable	code	per	person	
per	week,	the	most	productive	software	project	ever	documented.	The	team	attained	this	level	of	productivity	
by	 intensive	 interaction	 in	 daily	 meetings	 with	 project	 management,	 product	 management,	 developers,	
documenters,	and	quality	assurance	staff.	

WHY THE EASEL CEO SUPPORTED THE FIRST SCRUM
The	primary	driver	for	beginning	the	first	Scrum	was	absolute	commitment	to	a	date,	where	failure	would	
break	the	company.		We	had	to	guaranteed	delivery	of	an	innovative	product	to	the	market	that	would	achieve	
rapid	adoption.	

Meeting	with	the	CEO,	I	pointed	out	that	he	had	been	given	plans	for	years	that	were	supported	by	GANTT	
charts.	 He	 agreed	 no	 plan	 had	 ever	 delivered	 the	 required	 functionality	 on	 time.	 Many	 delays	 had	 been	
extensive	and	hurt	the	company	financially.	Forecasted	revenue	on	a	major	new	product	upgrade	was	millions	
of	dollars	a	month	so	every	month	late	cost	the	company	millions	in	revenue.	We	could	not	afford	late	delivery	
again,	as	the	company	would	operate	at	a	loss	for	a	quarter	or	more	and	damage	to	the	stock	price	would	be	
significant.	

Further,	 I	pointed	out	that	 in	the	past,	he	had	no	visibility	on	where	the	software	was	 in	the	middle	of	 the	
project.	He	had	GANTT	charts	and	reports	that	looked	good	on	paper	but	never	delivered	the	software	on	time.	
He	had	never	seen	a	promised	delivery	date	met	and	worse,	he	rarely	discovered	slippage	until	it	was	too	late	
to	reforecast	company	revenue.	

I	said	to	my	CEO	that	 if	we	adopt	Scrum,	we	set	the	objectives	at	the	beginning	of	a	Sprint.	 It	 is	the	team’s	
responsibility	to	figure	out	how	to	best	meet	those	objectives.	During	the	Sprint,	no	one	can	bother	the	team	
members.	At	the	end	of	a	Sprint,	I	added,	we	will	have	working	code	that	can	be	demonstrated	so	he	could	see	
the	progress	being	made.	You	can	decide	to	ship	anytime	or	do	another	Sprint	to	get	more	functionality.	Visible	
working	code	will	give	you	more	confidence	than	extensive	documentation	with	no	operational	system.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 49	

	

We	committed	to	a	fixed	date	six	months	out	and	planned	for	six	monthly	Sprints.	The	CEO	agreed	to	proceed	
with	the	first	software	development	Scrum.	It	took	him	about	60	seconds	to	decide.	Little	did	he	know	how	
much	of	the	future	of	global	software	development	rested	on	that	decision!	

SCRUM BASICS
The	first	Scrum	started	with	a	half-day	planning	session	that	outlined	the	feature	set	we	wanted	to	achieve	in	
a	six-month	period,	and	then	broke	 it	 into	six	pieces	that	were	achievable	 in	30-day	Sprints.	 	This	was	the	
Product	Backlog.	For	the	first	Sprint,	the	Product	Backlog	was	transformed	into	development	tasks	that	could	
be	done	in	less	than	one	day	each,	the	first	Sprint	Backlog.	

Short	daily	meetings	were	essential	to	drive	the	project	with	common	mindshare.	The	three	Scrum	questions	
were	used	in	the	first	Sprint.	What	did	you	do	yesterday,	what	will	you	do	today,	and	what	is	getting	in	your	
way?		Daily	meetings	at	Easel	were	disciplined	in	the	way	that	we	now	understand	as	the	Scrum	pattern	[26].	
This	 radically	 altered	 the	 nature	 of	 the	 software	 development	 process.	 It	 allowed	 sharing	 of	 the	 state	 of	
software	components	so	that	development	tasks,	thought	to	take	days,	could	often	be	accomplished	in	hours	
using	someone	else’s	code	as	a	starting	point.		

One	of	the	most	interesting	effect	of	Scrum	on	Easel’s	development	environment	was	an	observed	“punctuated	
equilibrium”	effect.	This	occurs	in	biological	evolution	when	a	species	is	stable	for	long	periods	of	time	and	
then	 undergoes	 a	 sudden	 jump	 in	 capability.	 During	 the	 long	 period	 of	 apparent	 stability,	 many	 internal	
changes	in	the	organism	are	reconfigured	that	cannot	be	observed	externally.	When	all	pieces	are	in	place	to	
allow	a	significant	jump	in	functionality,	external	change	occurs	suddenly.	A	fully	integrated	component	design	
environment	leads	to	unexpected,	rapid	evolution	of	a	software	system	with	emergent,	adaptive	properties	
resembling	the	process	of	punctuated	equilibrium	observed	in	biological	species.	Sudden	leaps	in	functionality	
resulted	in	earlier	than	expected	delivery	of	software	in	the	first	Scrum	[36].	

This	aspect	of	self-organization,	the	creators	of	Scrum	now	understand	as	a	type	of	Set	Based	Engineering	that	
is	practiced	at	Toyota.	Different	developers	were	working	on	many	components	of	the	system	and	trying	to	
evolve	them	as	fast	as	possible.	Decision	on	how	to	implement	a	task	from	a	Sprint	Backlog	was	delayed	until	
the	 last	 possible	 moment.	 The	 most	 evolved	 component	 for	 the	 task	 was	 selected	 to	 absorb	 the	 new	
functionality.	

By	having	every	member	of	the	team	see	every	day	what	every	other	team	member	was	doing,	we	began	to	get	
comments	 from	one	developer	 that	 if	he	 changed	a	 few	 lines	of	 code,	he	 could	eliminate	days	of	work	 for	
another	developer.	This	effect	was	so	dramatic	that	the	project	accelerated	to	the	point	at	which	it	had	to	be	
slowed	down	by	outnumbering	developers	with	documentation	and	testing	engineers.		This	hyperproductive	
state	was	seen	in	a	many	subsequent	Scrums,	although	never	as	dramatic	as	the	first	one	at	Easel.	It	was	a	
combination	of	(1)	the	skill	of	the	team,	(2)	the	flexibility	of	a	Smalltalk	development	environment,	and	(3)	the	
way	we	approached	production	prototypes	that	rapidly	evolved	into	a	deliverable	product.	

For	example,	a	key	to	entering	a	hyperproductive	state	was	not	just	the	Scrum	organizational	pattern.	We	did	
constant	component	testing	of	topic	areas,	integration	of	packages,	refactoring	of	selected	parts	of	the	system,	
and	multiple	builds	per	day.		These	activities	have	become	key	features	of	eXtreme	Programming	[37].		

Adding	the	Set	Based	Engineering	practice	is	now	viewed	as	the	“secret	sauce”	that	turbocharged	the	process.	
So	we	are	still	learning	lessons	from	the	first	Scrum.	The	magic	happens	when	the	Scrum	process	combines	
with	good	engineering	practices	and	a	sophisticated	approach	to	product	evolution.	Set	Based	Engineering	
caused	punctuated	equilibrium	and	uncontrollably	fast	proliferation	of	functionality.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 50	

	

	

We	held	a	demo	every	Friday	during	the	first	Scrum	and	brought	development	experts	from	other	companies	
in	to	look	at	the	product.	As	a	result,	our	developers	had	to	do	demos	to	peers	in	other	companies.	This	was	
one	of	the	most	powerful	accelerators	I	have	seen	in	software	development.	The	outside	experts	would	say,	
"That	sucks,	 look	at	Borland's	Product	X	to	see	how	it	should	be	done."	Or	"How	could	you	possible	have	a	
dumb	bug	like	that?"	

The	next	week,	everything	would	be	fixed!	The	developers	refused	to	be	embarrassed	again	in	front	of	their	
peers.	The	total	transparency	encouraged	by	Scrum	was	extended	outside	the	company	and	MIT	and	Route	
128	lead	engineers	self-organized	to	throw	the	Scrum	into	overdrive.	This	was	very	challenging	to	the	Scrum	
team.	Every	week	they	felt	they	were	not	good	enough	and	were	depressed.	I	kept	reminding	them	that	to	be	
world	class,	we	had	to	repeatedly	face	defeat	and	triumph	over	it.	We	now	understand	from	the	President	of	
Toyota	that	this	repeated	failure,	along	with	inspecting	and	adapting,	 is	a	 fundamental	practice	that	allows	
persons	and	teams	to	move	to	a	higher	level	of	practice.	

At	the	end	of	each	month,	the	CEO	got	his	demo.	He	could	use	the	software	himself	and	see	it	evolving.	We	then	
gave	the	software	to	the	consulting	group	to	use	in	prototyping	consulting	projects.	This	gave	us	an	incredible	
amount	of	feedback	to	incorporate	into	the	Product	Backlog,	a	list	of	features	that	are	desirable	to	have	in	the	
software.	 At	 the	 beginning	 of	 each	 Sprint,	 the	 Product	 Backlog	 is	 reprioritized	 before	 transformation	 into	
development	tasks.	The	Scrum	adaptability	to	change	allowed	the	CEO	and	the	Product	Owner	to	steer	product	
development	more	effectively	than	other	project	management	techniques.	

SCRUM RESULTS
The	CEO	saw	significant,	step-by-step	progress	in	each	increment	and	agreed	the	software	was	ready	to	ship	
in	 the	 fifth	 increment.	 It	had	more	 functionality	 than	expected	 in	 some	areas	and	 less	 in	others.	The	 sixth	
increment	was	primarily	 a	packaging	 increment.	We	 shipped	on	 the	day	 the	product	was	 scheduled	 to	be	
shipped.		

We	gave	a	money-back	guarantee	 that	 this	new	software	would	double	developer	productivity	 in	 the	 first	
month	of	use.	It	sold	well	until	the	Smalltalk	market	started	to	hit	the	wall	in	the	mid-1990s,	and	became	a	
model	for	Rational	Rose	development.	The	first	Scrum	Master,	John	Scumniotales	went	on	to	lead	the	Rational	
Rose	development	team	a	few	years	later.	

Everyone	agreed	that	(1)	Scrum	could	meet	a	deadline,	(2)	more	functionality	was	achieved	than	expected,	and	
(3)	there	would	never	be	a	return	to	a	waterfall-type	mentality	because	(1)	waterfall	could	not	predict,	(2)	it	
could	not	deliver	on	time,	(3)	it	produced	less	functionality	per	developer	unit	of	time,	and	(4)	user	satisfaction	
was	terrible	when	the	product	was	delivered,	since	waterfall	approaches	did	not	lend	themselves	to	customer	
involvement	or	alteration	of	specifications	required	by	rapidly	changing	market	conditions.	

Over	the	last	decade,	Scrum	has	emerged	from	humble	beginnings	to	a	movement	involving	tens	of	thousands	
of	projects	in	hundreds	of	the	leading	software	development	companies	worldwide.	The	process	model	used	
in	the	first	Scrum	1993	is	essentially	the	same	as	taught	in	Scrum	Master	courses	in	2007.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 51	

	

THE	FIRST	SCRUM:	HOW	SCRUM	PROVIDES	ENERGY,	FOCUS,	CLARITY,	AND	TRANSPARENCY	TO	PROJECT	
TEAMS	DEVELOPING	COMPLEX	SYSTEMS		
	
INTERVIEW	WITH	DR.	JEFF	SUTHERLAND,	CTO	OF	PATIENTKEEPER,	INC.	
EWORK-OUT	BUSINESS	PROCESSES,	MAY,	2006	
	
“…THE	PRIMARY	DRIVER	FOR	BEGINNING	THE	FIRST	SCRUM	WAS	ABSOLUTE	COMMITMENT	TO	A	DATE,	
WHERE	FAILURE	WOULD	BREAK	THE	COMPANY.		THE	TASK:	GUARANTEED	DELIVERY	OF	AN	INNOVATIVE	
PRODUCT	TO	THE	MARKET	THAT	WOULD	ACHIEVE	RAPID	ADOPTION.	
	
“IN	A	MEETING	WITH	THE	CEO,	I	NOTED	THAT	FOR	YEARS	HE	HAD	RECEIVED	PROJECT	PLANS	THAT	
WERE	SUPPORTED	BY	GANTT	CHARTS.		THE	CEO	AGREED	THAT	NO	PLAN	HAD	EVER	DELIVERED	THE	
REQUIRED	FUNCTIONALITY	ON	TIME.		MANY	DELAYS	HAD	BEEN	EXTENSIVE	AND	HURT	THE	COMPANY	

FINANCIALLY.	
“FORCASTED	REVENUE	ON	A	MAJOR	NEW	PRODUCT	UPGRADE	WAS	MILLIONS	OF	DOLLARS	A	MONTH,	SO	
EVERY	MONTH	THAT	A	PROJECT	WAS	LATE	COST	THE	COMPANY	MILLIONS	IN	REVENUE.		AS	THE	
COMPANY	WOULD	OPERATED	AT	A	LOSS	FOR	A	QUARTER	OR	MORE	AND	DAMAGE	TO	THE	STOCK	PRICE	

WOULD	BE	SIGNIFICANT,	WE	COULD	NOT	AFFORD	TO	REPEAT	THIS	CYCLE.		
	
“FURTHER,	I	POINTED	OUT	THAT	THE	CEO	HAD	NO	VIEW	OF	THE	STATUS	OF	THE	SOFTWARE	BY	THE	
MIDDLE	OF	THE	PROJECT.		HE	HAD	GANTT	CHARTS	AND	REPORTS	THAT	LOOKED	SOLID	ON	PAPER	BUT	
FAILED	TO	DELIVER	THE	SOFTWARE	ON	TIME.		HE	HAD	NEVER	SEEN	A	PROMISED	DELIVERY	DATE	MET,	
AND	WORSE,	HE	RARELY	DISCOVERED	SLIPPAGE	UNTIL	IT	WAS	TOO	LATE	TO	REFORECAST	COMPANY	
REVENUE.		
	
“I	TOLD	THE	CEO	THAT	IN	ADOPTING	SCRUM,	WE	SET	THE	OBJECTIVES	AT	THE	BEGINNING	OF	WHAT	
SCRUM	REFERS	TO	AS	A	SPRINT.		IT	IS	THE	TEAMS	RESPONSIBILITY	TO	DETERMINE	HOW	TO	BEST	MEET	
THOSE	OBJECTIVES.		DURING	THE	SPRINT,	NO	ONE	CAN	BOTHER	TEAM	MEMBERS	WITH	REQUESTS.		AT	
THE	END	OF	A	SPRINT,	I	ADDED,	WORKING	CODE	THAT	WILL	BE	DEMONSTRATED,	SO	YOU	CAN	SEE	THE	
PROGRESS	MADE.		YOU	CAN	DECIDE	TO	SHIP	ANYTIME	OR	DO	ANOTHER	SPRINT	TO	GET	MORE	
FUNCTIONALITY.		VISIBLE	WORKING	CODE	PROVIDES	MORE	CONFIDENCE	THAN	EXTENSIVE	
DOCUMENTATION	WITH	NO	OPERATIONAL	SYSTEM.	
	
“IN	THE	CASE	OF	THIS	PROJECT,	THE	DATE	WAS	SIX	MONTHS	OUT,	AND	WE	ESTABLISHED	SIX	SPRINTS.	
THE	CEO	AGREED	TO	PROCEED	WITH	THE	FIRST	SOFTWARE	DEVELOPMENT	SCRUM.	
	
“THE	FIRST	SCRUM	STARTED	WITH	A	HALF	DAY	PLANNING	SESSION	THAT	OUTLINED	THE	FEATURE	SET	
WE	WANTED	TO	ACHIEVE	IN	A	SIX	MONTH	PERIOD.		WE	THEN	BROKE	IT	INTO	SIX	PIECES	WHICH	WERE	

ACHIEVABLE	IN	30	DAY	SPRINTS.		THIS	WAS	THE	PRODUCT	BACKLOG.		FOR	THE	FIRST	SPRINT,	THE	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 52	

	

PRODUCT	BACKLOG	WAS	TRANSFORMED	INTO	DEVELOPMENT	TASKS	THAT	COULD	BE	DONE	IN	LESS	

THAN	A	DAY.		
	
“DAILY	MEETINGS	ALLOWED	EVERYONE	ON	THE	PROJECT	TEAM	TO	SEE	THE	STATUS	OF	ALL	ASPECTS	OF	
THE	PROJECT	IN	REAL	TIME.		THIS	ALLOWED	THE	COLLECTIVE	NEURAL	NETWORKS	OF	THE	TEAM'S	
MIND	TO	FINE-TUNE	OR	REDIRECT	EFFORTS	ON	A	DAILY	BASIS	TO	MAXIMIZE	THROUGHPUT.		THE	
RESULT	WAS	RADICAL	ALTERATION	OF	THE	SOFTWARE	DEVELOPMENT	PROCESS	BY	ALLOWING	SHARING	

OF	SOFTWARE	RESOURCES.		DEVELOPMENT	TASKS	THOUGHT	TO	TAKE	DAYS	COULD	OFTEN	BE	
ACCOMPLISHED	IN	HOURS	USING	SOMEONE	ELSE'S	CODE	AS	A	STARTING	POINT.	
…	
“THE	MEETINGS	WERE	KEPT	SHORT,	TYPICALLY	UNDER	30	MINUTES	AND	DISCUSSION	WAS	RESTRICTED	
TO	THE	THREE	SCRUM	QUESTIONS:	
	
WHAT	DID	YOU	DO	YESTERDAY?	
WHAT	WILL	YOU	DO	TODAY?	
WHAT	OBSTACLES	GOT	IN	YOUR	WAY?	
“BY	HAVING	EVERY	MEMBER	OF	THE	TEAM	SEE	EVERY	DAY	WHAT	EVERY	OTHER	TEAM	MEMBER	WAS	
DOING,	WE	COULD	MAKE	PROGRESS	BY	IDENTIFYING	WORK	THAT	COULD	BE	IMPROVED	BY	OTHERS.		WE	

RECEIVED	COMMENTS	FROM	ONE	DEVELOPER,	FOR	EXAMPLE,	THAT	IF	HE	CHANGED	A	FEW	LINES	OF	
CODE,	HE	COULD	ELIMINATE	DAYS	OF	WORK	FOR	ANOTHER	DEVELOPER.		THIS	EFFECT	WAS	SO	
DRAMATIC	THAT	THE	PROJECT	ACCELERATED	TO	THE	POINT	AT	WHICH	IT	HAD	TO	BE	SLOWED	DOWN	BY	

OUTNUMBERING	DEVELOPERS	WITH	DOCUMENTATION	AND	TESTING	ENGINEERS.		THIS	
HYPERPRODUCTIVE	STATE	WAS	SEEN	IN	SEVERAL	SUBSEQUENT	SCRUMS,	ALTHOUGH	NEVER	AS	
DRAMATICALLY	AS	THE	FIRST	AT	EASEL.	
…	
“AT	THE	END	OF	EACH	MONTH,	THE	CEO	GOT	A	DEMO.	HE	COULD	USE	THE	SOFTWARE	HIMSELF	AND	
SEE	IT	WORK.		WE	THEN	GAVE	THE	SOFTWARE	TO	THE	CONSULTING	GROUP	TO	USE	IN	PROTOTYPING	

CONSULTING	PROJECTS.		THIS	PROVIDED	AN	INCREDIBLE	AMOUNT	OF	FEEDBACK	TO	INCORPORATE	
INTO	THE	SCRUM	PRODUCT	BACKLOG:	A	LIST	OF	DESIRABLE	FEATURES	TO	INCLUDE	IN	THE	
SOFTWARE.		AT	THE	BEGINNING	OF	EACH	SPRINT,	PRODUCT	BACKLOG	IS	REPRIORITIZED	BEFORE	
TRANSFORMATION	INTO	DEVELOPMENT	TASKS.		THE	SCRUM	ADAPTABILITY	TO	CHANGE	ENABLED	THE	
CEO	TO	STEER	PRODUCT	DEVELOPMENT	MORE	EFFECTIVELY	THAN	OTHER	PROJECT	MANAGEMENT	
TECHNIQUES.	
	
“THE	CEO	SAW	SIGNIFICANT,	STEP	BY	STEP	PROGRESS	IN	EACH	INCREMENT	AND	HE	AGREED	THAT	THE	
PRODUCT	WAS	READY	TO	SHIP	IN	THE	FIFTH	INCREMENT.		IT	HAD	MORE	FUNCTIONALITY	THAN	
EXPECTED	IN	SOME	AREAS	AND	LESS	IN	OTHERS.		WE	SHIPPED	ON	THE	DAY	IT	WAS	SCHEDULED	TO	BE	

SHIPPED.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 53	

	

“EVERYONE	AGREED	THAT	FIRST,	SCRUM	COULD	MEET	A	DEADLINE;	SECOND,	MORE	FUNCTIONALITY	
WAS	ACHIEVED	THAN	EXPECTED;	AND	THIRD,	THERE	WOULD	NEVER	BE	A	RETURN	TO	[THE	OLD]	
MENTALITY	
“OVER	THE	PAST	DECADE,	SCRUM	HAS	EMERGED	FROM	HUMBLE	BEGINNINGS	TO	A	MOVEMENT	
INVOLVING	TENS	OF	THOUSANDS	OF	PROJECTS	IN	HUNDREDS	OF	THE	LEADING	SOFTWARE	

DEVELOPMENT	COMPANIES	WORLDWIDE.		PROPERLY	IMPLEMENTED,	SCRUM	REPRESENTS	BEST	
BUSINESS	PRACTICE	IN	SOME	OF	THE	WORLD'S	LEADING	CORPORATIONS.	
	
“IT	ALLOWS	TEAMS	TO	OPERATE	CLOSE	TO	THE	'EDGE	OF	CHAOS'	TO	FOSTER	RAPID	SYSTEM	
EVOLUTION,	ENFORCING	A	SIMPLE	SET	OF	RULES	FOR	SELF-ORGANIZATION	OF	SOFTWARE	TEAMS	TO	
PRODUCE	SYSTEMS	WITH	EVOLVING	ARCHITECTURES,	ALIGNING	INDIVIDUAL	AND	ORGANIZATION	
OBJECTIVES,	CREATING	A	CULTURE	DRIVEN	BY	PERFORMANCE,	SUPPORTING	SHAREHOLDER	VALUE	
CREATION,	ACHIEVING	STABLE	AND	CONSISTENT	COMMUNICATION	OF	PERFORMANCE	AT	ALL	
LEVELS,	AND	ENHANCING	INDIVIDUAL	DEVELOPMENT	AND	QUALITY	OF	LIFE.”	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 54	

	

CHAPTER	3:	WHAT	IS	SCRUM?	THE	FIRST	PAPERS	ON	THE	SCRUM	
DEVELOPMENT	PROCESS	
	

Note:	Best	practices	in	Scrum	have	evolved	over	the	years	and	may	not	reflected	in	this	early	paper.	For	
example,	 at	 PatientKeeper,	 there	 is	 no	 closure	 phase	 to	 a	 project.	 All	 user	 acceptance	 testing,	
documentation	and	training	is	done	as	part	of	a	Sprint	and	software	goes	into	production	at	multiple	
large	enterprises.	This	means	the	Sprint	demo	in	advanced	Scrum	implementations	is	a	live	system	with	
thousands	of	users	at	the	end	of	every	Sprint.	

Many	of	the	core	principles	taught	in	the	Scrum	Master	training	course	are	the	ones	created	by	the	first	Scrum	
team	 at	 Easel	 Corporation	 in	 1993.	 Sprints,	 monthly	 iterations,	 daily	 meetings	 with	 three	 questions,	
impediments,	 and	 backlogs.	 The	 first	 Scrum	 also	 implemented	 all	 the	 eXtreme	 Programming	 engineering	
practices	in	some	form	two	years	before	Kent	Beck	codified	XP.	

From	1995-2000,	Jeff	Sutherland	chaired	a	series	of	workshops	at	the	annual	OOPSLA	Conference	on	Business	
Object	 Design	 and	 Implementation	 [38].	 Ken	 Schwaber	 agreed	 to	 write	 the	 first	 paper	 on	 Scrum	 for	 the	
OOPSLA’95	Workshop	[39].	He	observed	the	first	Scrum	in	action	and	laid	out	the	fundamental	principles	of	
operation.	Over	a	decade	later	this	paper	is	still	one	of	the	most	widely	read	papers	from	OOPSLA	Conferences.	
It	continues	to	get	more	hits	than	any	other	paper	at	http://jeffsutherland.com/Scrum.	

The	concepts	of	complexity	theory	are	introduced	along	with	the	important	distinction	between	empirical	and	
predictive	processes.	Business	enterprises	are	complex	adaptive	systems	and	the	software	that	runs	them	is	
rapidly	becoming	equally	complex.	Software	systems	evolve	over	time	like	biological	systems.	Concepts	from	
artificial	 life	 [6]	 are	 informative	 as	 systems	 that	 are	 flexible	 evolve	 faster	 as	 flexibility	 increases	up	 to	 the	
boundary	of	chaos.	Using	empirical	process	control	to	prevent	chaotic	behavior	was	shown	to	be	the	essence	
of	Scrum	in	this	paper.	

Mike	Beedle	[26]	led	the	Scrum	process	through	elaboration	as	an	organizational	pattern	supported	by	Ken	
Schwaber,	Jeff	Sutherland,	and	others	(see	Appendix	I).	Further	information	on	the	essence	of	Scrum	can	be	
found	in	Agile	Development	with	Scrum	by	Ken	Schwaber	and	Mike	Beedle	[18]	with	contributions	from	Jeff	
Sutherland	that	can	be	found	in	a	paper	later	in	this	volume	–	Agile	Can	Scale:	Inventing	and	Reinventing	Scrum	
in	Five	Companies	[40].	

Over	 the	 last	13	years,	 Jeff	 Sutherland	has	used	 five	 companies	 as	 research	 laboratories	 for	 Scrum	 (Easel,	
VMARK,	Individual,	IDX,	PatientKeeper)	and	Ken	Schwaber	has	worked	as	a	consultant	in	the	last	three	of	these	
companies	where	they	have	tested	and	refined	Scrum	together.	Of	continued	interest	is	why	a	few	Scrum	teams	
enter	the	hyperproductive	state	like	the	first	Scrum.	This	is	clearly	affected	by	the	stages	of	maturity	of	Scrum	
implementations	[41]	along	with	the	structure	of	deployment	of	Scrum	teams	[29].	

	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 55	

	

SCRUM	DEVELOPMENT	PROCESS	
	

Ken	Schwaber	

Advanced	Development	Methods,	Inc.,	1995	

ABSTRACT	
	

The	stated,	accepted	philosophy	for	systems	development	is	that	the	development	process	is	a	well	understood	
approach	 that	 can	 be	 planned,	 estimated,	 and	 successfully	 completed.	 This	 has	 proven	 incorrect	 in	 practice.	
SCRUM	assumes	that	the	systems	development	process	is	an	unpredictable,	complicated	process	that	can	only	be	
roughly	described	as	an	overall	progression.	SCRUM	defines	the	systems	development	process	as	a	 loose	set	of	
activities	that	combines	known,	workable	tools	and	techniques	with	the	best	that	a	development	team	can	devise	
to	build	systems.	Since	these	activities	are	loose,	controls	to	manage	the	process	and	inherent	risk	are	used.	SCRUM	
is	an	enhancement	of	the	commonly	used	iterative/incremental	object-oriented	development	cycle.	

	

KEY	WORDS:	Scrum		SEI		Capability-Maturity-Model		Process		Empirical	

__	

	

	

1.	INTRODUCTION	
	

In	this	paper	we	introduce	a	development	process,	Scrum,	that	treats	major	portions	of	systems	development	
as	a	controlled	black	box.		We	relate	this	to	complexity	theory	to	show	why	this	approach	increases	flexibility	
and	ability	to	deal	with	complexity,	and	produces	a	system	that	is	responsive	to	both	initial	and	additionally	
occurring	requirements.		

	

Numerous	approaches	to	improving	the	systems	development	process	have	been	tried.		Each	has	been	touted	
as	providing	“significant	productivity	improvements.”	All	have	failed	to	produce	dramatic	improvements	[42].		
As	Grady	Booch	noted,	“We	often	call	this	condition	the	software	crisis,	but	frankly,	a	malady	that	has	carried	
on	this	long	must	be	called	normal.”[43]	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 56	

	

Concepts	 from	 industrial	 process	 control	 are	 applied	 to	 the	 field	 of	 systems	 development	 in	 this	 paper.		
Industrial	process	control	defines	processes	as	either	“theoretical”	(fully	defined)	or	“empirical”	(black	box).		
When	a	black	box	process	 is	 treated	as	a	 fully	defined	process,	unpredictable	 results	occur	 [44].	A	 further	
treatment	of	this	is	provided	in	Appendix	1.	

	

A	significant	number	of	systems	development	processes	are	not	completely	defined,	but	are	treated	as	though	
they	are.	Unpredictability	without	control	 results.	 	The	Scrum	approach	 treats	 these	systems	development	
processes	as	a	controlled	black	box.	

Variants	of	the	Scrum	approach	for	new	product	development	with	high	performance	small	teams	was	first	
observed	 by	 Takeuchi	 and	Nonaka	 [1]3	at	 Fuji-Xerox,	 Canon,	 Honda,	 NEC,	 Epson,	 Brother,	 3M,	 Xerox,	 and	
Hewlett-Packard.	A	similar	approach	applied	to	software	development	at	Borland	was	observed	by	Coplien	[2]	
to	be	the	highest	productivity	C++	development	project	ever	documented.	More	recently,	a	refined	approach	
to	the	SCRUM	process	has	been	applied	by	Sutherland	[45]	to	Smalltalk	development	and	Schwaber	[46]	to	
Delphi	development.	

	

The	Scrum	approach	is	used	at	leading	edge	software	companies	with	significant	success.		We	believe	Scrum	
may	be	appropriate	for	other	software	development	organizations	to	realize	the	expected	benefits	from	Object	
Oriented	techniques	and	tools	[47].			

	

2.	OVERVIEW	
	

Our	new	approach	to	systems	development	is	based	on	both	defined	and	black	box	process	management.	We	
call	the	approach	the	Scrum	methodology	(see	Takeuchi	and	Nonaka,	1986),	after	the	Scrum	in	Rugby	--	a	tight	
formation	of	forwards	who	bind	together	in	specific	positions	when	a	Scrumdown	is	called.	

	

As	will	be	discussed	later,	Scrum	is	an	enhancement	of	the	iterative	and	incremental	approach	to	delivering	
object-oriented	software	initially	documented	by	Pittman	[48]	and	later	expanded	upon	by	Booch	[49].	It	may	
use	the	same	roles	for	project	staff	as	outlined	by	Graham	[50],	for	example,	but	it	organizes	and	manages	the	
team	process	in	a	new	way.		

	

Scrum	is	a	management,	enhancement,	and	maintenance	methodology	for	an	existing	system	or	production	
prototype.	 It	 assumes	 existing	 design	 and	 code	 which	 is	 virtually	 always	 the	 case	 in	 object-oriented	
development	due	to	the	presence	of	class	 libraries.	Scrum	will	address	totally	new	or	re-engineered	legacy	
systems	development	efforts	at	a	later	date.	

	

Software	product	releases	are	planned	based	on	the	following	variables:	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 57	

	

	

• Customer	requirements	-	how	the	current	system	needs	enhancing.	

• Time	pressure	-	what	time	frame	is	required	to	gain	a	competitive	advantage.	

• Competition	-	what	is	the	competition	up	to,	and	what	is	required	to	best	them.	

• Quality	-	what	is	the	required	quality,	given	the	above	variables.	

• Vision	-	what	changes	are	required	at	this	stage	to	fulfill	the	system	vision.	

• Resource	-	what	staff	and	funding	are	available.	

	

These	variables	form	the	initial	plan	for	a	software	enhancement	project.	However,	these	variables	also	change	
during	the	project.	A	successful	development	methodology	must	take	these	variables	and	their	evolutionary	
nature	into	account.	

	

3.	CURRENT	DEVELOPMENT	SITUATION	
	

Systems	are	developed	in	a	highly	complicated	environment.		The	complexity	is	both	within	the	development	
environment	and	the	target	environment.		For	example,	when	the	air	traffic	control	system	development	was	
initiated,	three-tier	client	server	systems	and	airline	deregulation	did	not	have	to	be	considered.		Yet,	these	
environmental	and	technical	changes	occurred	during	the	project	and	had	to	be	taken	into	account	within	the	
system	being	built.	

	

Environmental	variables	include:	

	

• Availability	 of	 skilled	 professionals	 -	 the	 newer	 the	 technology,	 tools,	 methods,	 and	 domain,	 the	
smaller	 the	 pool	 of	 skilled	 professionals.	
	

• Stability	of	 implementation	 technology	 -	 the	newer	 the	 technology,	 the	 lower	 the	stability	and	 the	
greater	 the	 need	 to	 balance	 the	 technology	 with	 other	 technologies	 and	 manual	 procedures.	
	

• Stability	and	power	of	tools	-	the	newer	and	more	powerful	the	development	tool,	the	smaller	the	pool	
of	 skilled	 professionals	 and	 the	 more	 unstable	 the	 tool	 functionality.		
	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 58	

	

• Effectiveness	of	methods	-	what	modeling,	testing,	version	control,	and	design	methods	are	going	to	
be	 used,	 and	 how	 effective,	 efficient,	 and	 proven	 are	 they.		
	

• Domain	expertise	-	are	skilled	professionals	available	in	the	various	domains,	including	business	and	
technology.	
	

• New	features	-	what	entirely	new	features	are	going	to	be	added,	and	to	what	degree	will	these	fit	with	
current	 functionality.	
	

• Methodology	 -	 does	 the	 overall	 approach	 to	 developing	 systems	 and	 using	 the	 selected	methods	
promote	 flexibility,	 or	 is	 this	 a	 rigid,	 detailed	 approach	 that	 restricts	 flexibility.	
		

• Competition	 -	 what	 will	 the	 competition	 do	 during	 the	 project?	 What	 new	 functionality	 will	 be	
announced	 or	 released.	
	

• Time/Funding	 -	 how	 much	 time	 is	 available	 initially	 and	 as	 the	 project	 progresses?	 How	 much	
development	 funding	 is	 available.	
	

• Other	variables	-	any	other	factors	that	must	be	responded	to	during	the	project	to	ensure	the	success	
of	the	resulting,	delivered	system,	such	as	reorganizations.	

	

The	overall	complexity	is	a	function	of	these	variables:		

	

complexity	=	f(development	environment	variables	+	target	environment	variables)	

	

where	these	variables	may	and	do	change	during	the	course	of	the	project.	

	

As	 the	 complexity	 of	 the	 project	 increases,	 the	 greater	 the	 need	 for	 controls,	 particularly	 the	 ongoing	
assessment	and	response	to	risk.	

	

Attempts	to	model	this	development	process	have	encountered	the	following	problems:	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 59	

	

• Many	of	the	development	processes	are	uncontrolled.		The	inputs	and	outputs	are	either	unknown	or	
loosely	 defined,	 the	 transformation	 process	 lacks	 necessary	 precision,	 and	 quality	 control	 is	 not	
defined.	Testing	processes	are	an	example.	

	

• An	unknown	number	of	development	processes	that	bridge	known	but	uncontrolled	processes	are	
unidentified.	Detailed	processes	to	ensure	that	a	logical	model	contains	adequate	content	to	lead	to	a	
successful	physical	model	are	one	such	process.	

	

• Environmental	 input	 (requirements)	 can	 only	 be	 taken	 into	 consideration	 at	 the	 beginning	 of	 the	
process.	Complex	change	management	procedures	are	required	thereafter.	

	

Attempts	to	impose	a	micro,	or	detailed,	methodology	model	on	the	development	process	have	not	worked	
because	the	development	process	is	still	not	completely	defined.		Acting	as	though	the	development	process	is	
defined	and	predictable,	results	in	being	unprepared	for	the	unpredictable	results.	

	

Although	 the	 development	 process	 is	 incompletely	 defined	 and	 dynamic,	 numerous	 organizations	 have	
developed	detailed	development	methodologies	that	include	current	development	methods	(structured,	OO,	
etc.).	The	Waterfall	methodology	was	one	of	the	first	such	defined	system	development	processes.		A	picture	
of	the	Waterfall	methodology	is	shown	in	Figure	1.	

	

	

		

Figure	1	:	Waterfall	Methodology	

	

Although	the	waterfall	approach	mandates	the	use	of	undefined	processes,	its	linear	nature	has	been	its	largest	
problem.	The	process	does	not	define	how	 to	 respond	 to	unexpected	output	 from	any	of	 the	 intermediate	
process.	

Planning

Analysis Design Development Implement

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 60	

	

	

Barry	Boehm	introduced	a	Spiral	methodology		to	address	this	problem	[51].		Each	of	the	waterfall	phases	is	
ended	with	a	risk	assessment	and	prototyping	activity.		The	Spiral	methodology	is	shown	in	Figure	2.	

	

The	 Spiral	 methodology	 “peels	 the	 onion,”	 progressing	 through	 “layers”	 of	 the	 development	 process.	 	 A	
prototype	 lets	users	determine	 if	 the	project	 is	on	track,	should	be	sent	back	to	prior	phases,	or	should	be	
ended.		However,	the	phases	and	phase	processes	are	still	linear.		Requirements	work	is	still	performed	in	the	
requirements	phase,	design	work	in	the	design	phase,	and	so	forth,	with	each	of	the	phases	consisting	of	linear,	
explicitly	defined	processes.	

	

	

	

Figure	2	:	Spiral	Methodology	

	

The	Iterative	methodology	improves	on	the	Spiral	methodology.		Each	iteration	consists	of	all	of	the	standard	
Waterfall	 phases,	 but	 each	 iteration	 only	 addresses	 one	 set	 of	 parsed	 functionality.	 	 The	 overall	 project	
deliverable	has	been	partitioned	into	prioritized	subsystems,	each	with	clean	interfaces.		Using	this	approach,	
one	can	test	the	feasibility	of	a	subsystem	and	technology	in	the	initial	iterations.		Further	iterations	can	add	
resources	to	the	project	while	ramping	up	the	speed	of	delivery.		This	approach	improves	cost	control,	ensures	
delivery	of	systems	(albeit	subsystems),	and	improves	overall	flexibility.		However,	the	Iterative	approach	still	
expects	that	the	underlying	development	processes	are	defined	and	linear.		See	Figure	3.	

	

Prototype

Evaluate alternatives;
Identify, resolve risks

Determine objectives,
alternatives,
constraints

Plan next phases

Concept

Requirements

Design
Implement

Develop next level product

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 61	

	

	

	

	

Figure	3	:	Iterative	Methodology	

	

	

Given	the	complex	environment	and	the	increased	reliance	on	new	"state-of-the-art"	systems,	the	risk	endured	
by	 system	 development	 projects	 has	 increased	 and	 the	 search	 for	 mechanisms	 to	 handle	 this	 risk	 has	
intensified.		

	

One	can	argue	that	current	methodologies	are	better	than	nothing.			Each	improves	on	the	other.	The	Spiral	
and	Iterative	approaches	 implant	 formal	risk	control	mechanisms	for	dealing	with	unpredictable	results.	A	
framework	for	development	is	provided.	

	

However,	each	rests	on	the	fallacy	that	the	development	processes	are	defined,	predictable	processes.	 	But	
unpredictable	results	occur	throughout	the	projects.	The	rigor	implied	in	the	development	processes	stifles	
the	flexibility	needed	to	cope	with	the	unpredictable	results	and	respond	to	a	complex	environment.	

	

System Test

Module Test

CodingDetail Design

Preliminary
Design

Requirements
Analysis

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 62	

	

Despite	their	widespread	presence	in	the	development	community,	our	experience	in	the	industry	shows	that	
people	do	not	use	the	methodologies	except	as	a	macro	process	map,	or	for	their	detailed	method	descriptions.	

	

The	following	graph	demonstrates	the	current	development	environment,	using	any	of	the	Waterfall,	Spiral	or	
Iterative	processes.		As	the	complexity	of	the	variables	increase	even	to	a	moderate	level,	the	probability	of	a	
“successful”	 project	 quickly	 diminishes	 (a	 successful	 project	 is	 defined	 as	 a	 system	 that	 is	 useful	 when	
delivered).	See	Figure	4.	

	

	

	

Figure	4:	Defined	Process	Risk/Complexity	Graph	

	

	

4.	SCRUM	METHODOLOGY	
	

The	system	development	process	is	complicated	and	complex.		Therefore	maximum	flexibility	and	appropriate	
control	is	required.		Evolution	favors	those	that	operate	with	maximum	exposure	to	environmental	change	and	
have	maximized	 flexibility.	 Evolution	 deselects	 those	who	 have	 insulated	 themselves	 from	 environmental	
change	and	have	minimized	chaos	and	complexity	in	their	environment.	

0.9

0.1

probability(Success) 0.5

Low Medium High

 Complexity

Inflexible response to
unpredictability (internal & external)
causes sharp drop in p(Success)
as complexity increases

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 63	

	

	

An	approach	is	needed	that	enables	development	teams	to	operate	adaptively	within	a	complex	environment	
using	 imprecise	 processes.	 Complex	 system	 development	 occurs	 under	 rapidly	 changing	 circumstances.	
Producing	 orderly	 systems	 under	 chaotic	 circumstances	 requires	 maximum	 flexibility.	 The	 closer	 the	
development	team	operates	to	the	edge	of	chaos,	while	still	maintaining	order,	the	more	competitive	and	useful	
the	resulting	system	will	be.	Langton	has	modeled	this	effect	in	computer	simulations	[6]	and	his	work	has	
provided	this	as	a	fundamental	theorem	in	complexity	theory.	

	

Methodology	may	well	be	the	most	important	factor	in	determining	the	probability	of	success.	Methodologies	
that	encourage	and	support	flexibility	have	a	high	degree	of	tolerance	for	changes	in	other	variables.	With	these	
methodologies,	the	development	process	is	regarded	as	unpredictable	at	the	onset,	and	control	mechanisms	
are	put	in	place	to	manage	the	unpredictability.	

	

If	we	 graph	 the	 relationship	 between	 environmental	 complexity	 and	probability	 of	 success	with	 a	 flexible	
methodology	that	incorporates	controls	and	risk	management,	the	tolerance	for	change	is	more	durable.		See	
Figure	5.	

	

	

	

Figure	5:	Risk/Complexity	Comparison	Graph	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 64	

	

	

Figures	4	and	5	reflect	software	development	experiences	at	ADM,	Easel,	VMARK,	Borland	and	virtually	every	
other	 developer	 of	 “packaged”	 software.	 	 These	 organizations	 have	 embraced	 risk	 and	 environmental	
complexity	 during	 development	 projects.	 	 Increased	 product	 impact,	 successful	 projects,	 and	 productivity	
gains	were	experienced.		The	best	possible	software	is	built.	

	

Waterfall	and	Spiral	methodologies	set	the	context	and	deliverable	definition	at	the	start	of	a	project.	Scrum	
and	Iterative	methodologies	initially	plan	the	context	and	broad	deliverable	definition,	and	then	evolve	the	
deliverable	 during	 the	 project	 based	 on	 the	 environment.	 	 Scrum	 acknowledges	 that	 the	 underlying	
development	processes	are	incompletely	defined	and	uses	control	mechanisms	to	improve	flexibility.	

	

The	primary	difference	between	the	defined	(waterfall,	spiral	and	iterative)	and	empirical	(Scrum)	approach	
is	that	the	Scrum	approach	assumes	that	the	analysis,	design,	and	development	processes	in	the	Sprint	phase	
are	unpredictable.		A	control	mechanism	is	used	to	manage	the	unpredictability	and	control	the	risk.		Flexibility,	
responsiveness,	and	reliability	are	the	results.		See	Figure	6.	

	

	

	

	

Figure	6	:	Scrum	Methodology	

	

Characteristics	of		Scrum	methodology	are	:	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 65	

	

	

• The	 first	and	 last	phases	(Planning	and	Closure)	consist	of	defined	processes,	where	all	processes,	
inputs	and	outputs	are	well	defined.		The	knowledge	of	how	to	do	these	processes	is	explicit.		The	flow	
is	 linear,	 with	 some	 iterations	 in	 the	 planning	 phase.	
	

• The	Sprint	phase	is	an	empirical	process.		Many	of	the	processes	in	the	sprint	phase	are	unidentified	
or	uncontrolled.	 	 It	 is	treated	as	a	black	box	that	requires	external	controls.	 	Accordingly,	controls,	
including	 risk	 management,	 	 are	 put	 on	 each	 iteration	 of	 the	 Sprint	 phase	 to	 avoid	 chaos	 while	
maximizing	 flexibility.	
	

• Sprints	are	nonlinear	and	 flexible.	 	Where	available,	explicit	process	knowledge	 is	used;	otherwise	
tacit	knowledge	and	trial	and	error	is	used	to	build	process	knowledge.		Sprints	are	used	to	evolve	the	
final	 product.	
	

• The	project	is	open	to	the	environment	until	the	Closure	phase.		The	deliverable	can	be	changed	at	any	
time	during	the	Planning	and	Sprint	phases	of	the	project.	The	project	remains	open	to	environmental	
complexity,	 including	 competitive,	 time,	 quality,	 and	 financial	 pressures,	 throughout	 these	phases.	
	

• The	deliverable	is	determined	during	the	project	based	on	the	environment.	

	

The	table	in	Figure	7	compares	the	primary	Scrum	characteristics	to	those	of	other	methodologies.	

	

	 Waterfall	 Spiral	 Iterative	 Scrum	

Defined	processes	 Required	 Required	 Required	 Planning	 &	 Closure	
only	

Final	product	 Determined	during	
planning	

Determined	during	
planning	

Set	 during	
project	

Set	during	project	

Project	cost	 Determined	during	
planning	

Partially	variable	 Set	 during	
project	

Set	during	project	

Completion	date	 Determined	during	
planning	

Partially	variable	 Set	 during	
project	

Set	during	project	

Responsiveness	 to	
environment	

Planning	only	 Planning	primarily	 At	 end	of	 each	
iteration	

Throughout	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 66	

	

Team	 flexibility,	
creativity	

Limited	-	cookbook	
approach	

Limited	-	cookbook	
approach	

Limited	 -	
cookbook	
approach	

Unlimited	 during	
iterations	

Knowledge	
transfer	

Training	 prior	 to	
project	

Training	 prior	 to	
project	

Training	 prior	
to	project	

Teamwork	 during	
project	

Probability	 of	
success	

Low	 Medium	low	 Medium	 High	

	

Figure	7	:	Methodology	Comparison	

	

4.1	SCRUM	PHASES		
	

Scrum	has	the	following	groups	of	phases:	

	

4.1.1.	PREGAME	
	

• Planning	:	Definition	of	a	new	release	based	on	currently	known	backlog,	along	with	an	estimate	of	its	
schedule	and	cost.		If	a	new	system	is	being	developed,	this	phase	consists	of	both	conceptualization	
and	analysis.		If	an	existing	system	is	being	enhanced,	this	phase	consists	of	limited	analysis.	

• Architecture	 :	 Design	 how	 the	 backlog	 items	 will	 be	 implemented.	 	 This	 phase	 includes	 system	
architecture	modification	and	high	level	design.	

	

4.1.2.	GAME	
	

• Development	 Sprints	 :	 Development	 of	 new	 release	 functionality,	 with	 constant	 respect	 to	 the	
variables	of	time,	requirements,	quality,	cost,	and	competition.	Interaction	with	these	variables	defines	
the	end	of	this	phase.	There	are	multiple,	 iterative	development	sprints,	or	cycles,	 that	are	used	to	
evolve	the	system.	

	

4.1.3.	POSTGAME	
	

• Closure	 :	 Preparation	 for	 release,	 including	 final	 documentation,	 pre-release	 staged	 testing,	 and	
release.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 67	

	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 68	

	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 69	

	

	

Figure	8:	Scrum	Methodology	

	

4.2	PHASE	STEPS	
	

Each	of	the	phases	has	the	following	steps:	

	

4.2.1.	PLANNING	
	

• Development	of	a	comprehensive	backlog	list.	

• Definition	of	the	delivery	date	and	functionality	of	one	or	more	releases.			

• Selection	of	the	release	most	appropriate	for	immediate	development.	

• Mapping	of	product	packets	(objects)	for	backlog	items	in	the	selected	release.	

• Definition	of	project	team(s)	for	the	building	of	the	new	release.	

• Assessment	of	risk	and	appropriate	risk	controls.	

• Review	and	possible	adjustment	of	backlog	items	and	packets.		

• Validation	or	reselection	of	development	tools	and	infrastructure.	

• Estimation	of	release	cost,	including	development,	collateral	material,	marketing,	training,	and	rollout.	

• Verification	of	management	approval	and	funding.	

	

4.2.2.	ARCHITECTURE/HIGH	LEVEL	DESIGN	
	

• Review	assigned	backlog	items.	

• Identify	changes	necessary	to	implement	backlog	items.		

• Perform	domain	analysis	to	the	extent	required	to	build,	enhance,	or	update	the	domain	models	to	
reflect	the	new	system	context	and	requirements.	

• Refine	the	system	architecture	to	support	the	new	context	and	requirements.		

• Identify	any	problems	or	issues	in	developing	or	implementing	the	changes	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 70	

	

• Design	review	meeting,	each	team	presenting	approach	and	changes	to	implement	each	backlog	item.		
Reassign	changes	as	required.	

	

4.2.3.	DEVELOPMENT	(SPRINT)	
	

The	Development	phase	is	an	iterative	cycle	of	development	work.		The	management	determines	that	time,	
competition,	quality,	or	 functionality	are	met,	 iterations	are	completed	and	the	closure	phase	occurs.	 	This	
approach	is	also	known	as	Concurrent	Engineering.		Development	consists	of	the	following	macro	processes:	

	

• Meeting	with	teams	to	review	release	plans.	

• Distribution,	review	and	adjustment	of	the	standards	with	which	the	product	will	conform.	

• Iterative	Sprints,	until	the	product	is	deemed	ready	for	distribution.		

	

A	Sprint	is	a	set	of	development	activities	conducted	over	a	pre-defined	period,	usually	one	to	four	weeks.		The	
interval	is	based	on	product	complexity,	risk	assessment,	and	degree	of	oversight	desired.		Sprint	speed	and	
intensity	are	driven	by	the	selected	duration	of	the	Sprint.	Risk	is	assessed	continuously	and	adequate	risk	
controls	and	responses		are	put	in	place.		Each	Sprint	consists	of	one	or	more	teams	performing	the	following:	

	

• Develop:	 Defining	 changes	 needed	 for	 the	 implementation	 of	 backlog	 requirements	 into	 packets,	
opening	the	packets,	performing	domain	analysis,	designing,	developing,	implementing,	testing,	and	
documenting	the	changes.	 	Development	consists	of	 the	micro	process	of	discovery,	 invention,	and	
implementation.	

• Wrap:	Closing	the	packets,	creating	a	executable	version	of	changes	and	how	they	implement	backlog	
requirements.			

• Review:	All	 teams	meeting	 to	present	work	and	 review	progress,	 raising	and	 resolving	 issues	and	
problems,	adding	new	backlog	items.		Risk	is	reviewed	and	appropriate	responses	defined.	

• Adjust:	 Consolidating	 the	 information	 gathered	 from	 the	 review	 meeting	 into	 affected	 packets,	
including	different	look	and	feel	and	new	properties.		

	

Each	Sprint	is	followed	by	a	review,	whose	characteristics	are	:	

	

• The	whole	team	and	product	management	are	present	and	participate.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 71	

	

• The	review	can	include	customers,	sales,	marketing	and	others.	

• Review	covers	functional,	executable	systems	that	encompass	the	objects	assigned	to	that	team	and	
include	the	changes	made	to	implement	the	backlog	items.	

• The	way	backlog	items	are	implemented	by	changes	may	be	changed	based	on	the	review.	

• New	backlog	 items	may	 be	 introduced	 and	 assigned	 to	 teams	 as	 part	 of	 the	 review,	 changing	 the	
content	and	direction	of	deliverables.	

• The	time	of	the	next	review	is	determined	based	on	progress	and	complexity.		The	Sprints	usually	have	
a	duration	of	1	to	4	weeks.	

	

4.2.4.	CLOSURE	
	

When	 the	management	 team	 feels	 that	 the	 variables	 of	 time,	 competition,	 requirements,	 cost,	 and	 quality	
concur	for	a	new	release	to	occur,	they	declare	the	release	“closed”	and	enter	this	phase.		The	closure	phase	
prepares	 the	developed	product	 for	general	 release.	 Integration,	 system	 test,	user	documentation,	 training	
material	preparation,	and	marketing	material	preparation	are	among	closure	tasks.	

	

4.3.	SCRUM	CONTROLS	
	

Operating	at	the	edge	of	chaos	(unpredictability	and	complexity)	requires	management	controls	to	avoid	falling	
into	chaos.		The	Scrum	methodology	embodies	these	general,	loose	controls,	using	OO	techniques	for	the	actual	
construction	of	deliverables.	

	

Risk	is	the	primary	control.		Risk	assessment	leads	to	changes	in	other	controls	and	responses	by	the	team.	

	

Controls	in	the	Scrum	methodology	are	:	

	

• Backlog:	Product	functionality	requirements	that	are	not	adequately	addressed	by	the	current	product	
release.	 	 Bugs,	 defects,	 customer	 requested	 enhancements,	 competitive	 product	 functionality,	
competitive	 edge	 functionality,	 and	 technology	 upgrades	 are	 backlog	 items.	
	

• Release/Enhancement:	backlog	items	that	at	a	point	in	time	represent	a	viable	release	based	on	the	
variables	of	requirements,	time,	quality,	and	competition.	 	
	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 72	

	

• Packets:	Product	components	or	objects	that	must	be	changed	to	implement	a	backlog	item	into	a	new	
release.	
	

• Changes:	 Changes	 that	 must	 occur	 to	 a	 packet	 to	 implement	 a	 backlog	 item.	
	

• Problems:	 Technical	 problems	 that	 occur	 and	 must	 be	 solved	 to	 implement	 a	 change.	
	

• Risks:	risks	that	affect	the	success	of	the	project	are	continuously	assessed	and	responses	planned.		
Other	 controls	 are	 affected	 as	 a	 result	 of	 risk	 assessment.	
	

• Solutions:	 solutions	 to	 the	 problems	 and	 risks,	 often	 resulting	 in	 changes.	
	

• Issues:	 Overall	 project	 and	 project	 issues	 that	 are	 not	 defined	 in	 terms	 of	 packets,	 changes	 and	
problems.	

	

These	controls	are	used	in	the	various	phases	of	Scrum.		Management	uses	these	controls	to	manage	backlog.		
Teams	use	these	controls	to	manage	changes,	problems.		Both	management	and	teams	jointly	manage	issues,	
risks,	and	solutions.	These	controls	are	reviewed,	modified,	and	reconciled	at	every	Sprint	review	meeting.	

	

4.4	SCRUM	DELIVERABLES	
	

The	 delivered	 product	 is	 flexible.	 Its	 content	 is	 determined	 by	 environment	 variables,	 including	 time,	
competition,	cost,	or	 functionality.	The	deliverable	determinants	are	market	 intelligence,	customer	contact,	
and	the	skill	of	developers.	Frequent	adjustments	to	deliverable	content	occur	during	the	project	in	response	
to	environment.	The	deliverable	can	be	determined	anytime	during	the	project.	

	

4.5	SCRUM	PROJECT	TEAM	
	

The	team	that	works	on	the	new	release	includes	full	time	developers	and	external	parties	who	will	be	affected	
by	 the	new	release,	 such	as	marketing,	 sales,	 and	 customers.	 	 In	 traditional	 release	processes,	 these	 latter	
groups	 are	 kept	 away	 from	 development	 teams	 for	 fear	 of	 over-complicating	 the	 process	 and	 providing	
“unnecessary”	 interference.	 	 The	 Scrum	 approach,	 however,	 welcomes	 and	 facilitates	 their	 controlled	
involvement	 at	 set	 intervals,	 as	 this	 increases	 the	 probability	 that	 release	 content	 and	 timing	 will	 be	
appropriate,	useful,	and	marketable.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 73	

	

The	following	teams	are	formed	for	each	new	release:	

	

Management:	Led	by	the	Product	Manager,	it	defines	initial	content	and	timing	of	the	release,	then	manages	
their	 evolution	 as	 the	 project	 progresses	 and	 variables	 change.	Management	 deals	with	 backlog,	 risk,	 and	
release	content.	

	

Development	teams:	Development	teams	are	small,	with	each	containing	developers,	documenters	and	quality	
control	staff.	 	One	or	more	teams	of	between	three	and	six	people	each	are	used.	 	Each	is	assigned	a	set	of	
packets	(or	objects),	including	all	backlog	items	related	to	each	packet.		The	team	defines	changes	required	to	
implement	the	backlog	item	in	the	packets,	and	manages	all	problems	regarding	the	changes.		Teams	can	be	
either	 functionally	 derived	 (assigned	 those	 packets	 that	 address	 specific	 sets	 of	 product	 functionality)	 or	
system	derived	(assigned	unique	layers	of	the	system).		The	members	of	each	team	are	selected	based	on	their	
knowledge	and	expertise	regarding	sets	of	packets,	or	domain	expertise.	

	

4.6	SCRUM	CHARACTERISTICS	
	

The	Scrum	methodology	is	a	metaphor	for	the	game	of	Rugby.		Rugby	evolved	from	English	football	(soccer)	
under	the	intense	pressure	of	the	game:	

	

Rugby	student	William	Webb	Ellis,	17,	inaugurates	a	new	game	whose	rules	will	be	codified	in	
1839.	Playing	soccer	for	the	256-year-old	college	in	East	Warwickshire,	Ellis	sees	that	the	clock	
is	running	out	with	his	team	behind	so	he	scoops	up	the	ball	and	runs	with	it	in	defiance	of	the	
rules.		

The	People's	Chronology,	Henry	Holt	and	Company,	Inc.	Copyright	©	1992.	

	

Scrum	projects	have	the	following	characteristics:	

	

• Flexible	 deliverable	 -	 the	 content	 of	 the	 deliverable	 is	 dictated	 by	 the	 environment.	
	

• Flexible	 schedule	 -	 the	 deliverable	 may	 be	 required	 sooner	 or	 later	 than	 initially	 planned.	
	

• Small	teams	-	each	team	has	no	more	than	6	members.		There	may	be	multiple	teams	within	a	project.	
	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 74	

	

• Frequent	reviews	-	 team	progress	 is	reviewed	as	 frequently	as	environmental	complexity	and	risk	
dictates	(usually	1	to	4	week	cycles).		A	functional	executable	must	be	prepared	by	each	team	for	each	
review.	
	

• Collaboration	 -	 intra	 and	 inter-collaboration	 is	 expected	 during	 the	 project.	
	

• Object	Oriented	-	each	team	will	address	a	set	of	related	objects,	with	clear	interfaces	and	behavior.	

	

The	Scrum	methodology	shares	many	characteristics	with	the	sport	of	Rugby:	

	

• The	 context	 is	 set	 by	 playing	 field	 (environment)	 and	 Rugby	 rules	 (controls).	
	

• The	 primary	 cycle	 is	 moving	 the	 ball	 forward.	
	

• Rugby	 evolved	 from	 breaking	 soccer	 rules	 -	 adapting	 to	 the	 environment.	
	

The	game	does	not	end	until	environment	dictates	(business	need,	competition,	functionality,	timetable).	

	

5.	ADVANTAGES	OF	THE	SCRUM	METHODOLOGY	
	

Traditional	development	methodologies	are	designed	only	to	respond	to	the	unpredictability	of	the	external	
and	development	environments	at	the	start	of	an	enhancement	cycle.		Such	newer	approaches	as	the	Boehm	
spiral	methodology	and	its	variants	are	still	limited	in	their	ability	to	respond	to	changing	requirements	once	
the	project	has	started.	

	

The	Scrum	methodology,	on	the	other	hand,	 is	designed	to	be	quite	flexible	throughout.	It	provides	control	
mechanisms	 for	 planning	 a	 product	 release	 and	 then	 managing	 variables	 as	 the	 project	 progresses.	 This	
enables	 organizations	 to	 change	 the	 project	 and	 deliverables	 at	 any	 point	 in	 time,	 delivering	 the	 most	
appropriate	release.	

	

The	Scrum	methodology	frees	developers	to	devise	the	most	ingenious	solutions	throughout	the	project,	as	
learning	occurs	and	the	environment	changes.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 75	

	

Small,	collaborative	teams	of	developers	are	able	to	share	tacit	knowledge	about	development	processes.		An	
excellent	training	environment	for	all	parties	is	provided.	

	

Object	Oriented	technology	provides	the	basis	for	the	Scrum	methodology.		Objects,	or	product	features,	offer	
a	 discrete	 and	 manageable	 environment.	 	 Procedural	 code,	 with	 its	 many	 and	 intertwined	 interfaces,	 is	
inappropriate	for	the	Scrum	methodology.		Scrum	may	be	selectively	applied	to	procedural	systems	with	clean	
interfaces	and	strong	data	orientation.	

	

6.	SCRUM	PROJECT	ESTIMATING	
	

Scrum	projects	can	be	estimated	using	standard	function	point	estimating.		However,	it	is	advisable	to	estimate	
productivity	at	approximately	twice	the	current	metric.		The	estimate	is	only	for	starting	purposes,	however,	
since	the	overall	timetable	and	cost	are	determined	dynamically	in	response	to	the	environmental	factors.	

	

Our	observations	have	led	us	to	conclude	that	Scrum	projects	have	both	velocity	and	acceleration.		In	terms	of	
functions	delivered,	or	backlog	items	completed:	

	

• initial	velocity	and	acceleration	are	low	as	infrastructure	is	built/modified	

• as	base	functionality	is	put	into	objects,	acceleration	increases	

• acceleration	decreases	and	velocity	remains	sustainably	high	

	

Further	development	in	metrics	for	empirical	processes	is	required.	

	

7.	SYSTEM	DEVELOPMENT	METHODOLOGIES	:	DEFINED	OR	EMPIRICAL	
	

System	 development	 is	 the	 act	 of	 creating	 a	 logical	 construct	 that	 is	 implemented	 as	 logic	 and	 data	 on	
computers.		The	logical	construct	consists	of	inputs,	processes,	and	outputs,	both	macro	(whole	construct)	and	
micro	(intermediate	steps	within	whole	construct).	The	whole	is		known	as	an	implemented	system.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 76	

	

Many	 artifacts	 are	 created	 while	 building	 the	 system.	 	 Artifacts	 may	 be	 used	 to	 guide	 thinking,	 check	
completeness,	and	create	an	audit	trail.		The	artifacts	consist	of	documents,	models,	programs,	test	cases,	and	
other	deliverables	created	prior	to	creating	the	implemented	system.		When	available,	a	metamodel	defines	the	
semantic	content	of	model	artifacts.		Notation	describes	the	graphing	and	documentation	conventions	that	are	
used	to	build	the	models.	

	

The	approach	used	to	develop	a	system	is	known	as	a	method.		A	method	describes	the	activities	involved	in	
defining,	building,	and	implementing	a	system;	a	method	is	a	framework.		Since	a	method	is	a	logical	process	
for	constructing	systems	(process),	it	is	known	as	a	metaprocess	(a	process	for	modeling	processes).			

	

A	method	 	 has	 micro	 and	macro	 components.	 	 The	macro	 components	 define	 the	 overall	 flow	 and	 time-
sequenced	framework	for	performing	work.		The	micro	components	include	general	design	rules,	patterns	and	
rules	of	thumb.		General	design	rules	state	properties	to	achieve	or	to	avoid	in	the	design	or	general	approaches	
to	take	while	building	a	system.	Patterns	are	solutions	that	can	be	applied	to	a	type	of	development	activity;	
they	are	solutions	waiting	for	problems	that	occur	during	an	activity	in	a	method.		Rules	of	thumb	consist	of	
a	general	body	of	hints	and	tips.	

	

	

	

Figure	9:	Relationship	between	the	Method,	the	Artifacts,	and	the	System	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 77	

	

Applying	 concepts	 from	 industrial	 process	 control	 to	 the	 field	 of	 systems	 development,	 methods	 can	 be	
categorized	as	either	“theoretical”	(fully	defined)	or	“empirical”	(black	box).			

	

Correctly	 categorizing	 systems	 development	methods	 is	 critical.	 	 The	 appropriate	 structure	 of	 a	method	 for	
building	a	particular	type	of	system	depends	on	whether	the	method	is	theoretical	or	empirical.	

	

Models	 of	 theoretical	 processes	 are	 derived	 from	 first	 principles,	 using	 material	 and	 energy	 balances	 and	
fundamental	laws	to	determine	the	model.		For	a	systems	development	method	to	be	categorized	as	theoretical,	
it	must	conform	to	this	definition.	

	

Models	of	empirical	processes	are	derived	categorizing	observed	inputs	and	outputs,	and	defining	controls	that	
cause	them	to	occur	within	prescribed	bounds.		Empirical	process	modeling	involves	constructing	a	process	
model	strictly	from	experimentally	obtained	input/output	data,	with	no	recourse	to	any	laws	concerning	the	
fundamental	 nature	 and	 properties	 of	 the	 system.	 	 No	a	 priori	 knowledge	 about	 the	 process	 is	 necessary	
(although	it	can	be	helpful);	a	system	is	treated	like	a	black	box.	

	

Primary	characteristics	of	both	theoretical	and	empirical	modeling	are	detailed	in	Figure	10.	

	

Theoretical	Modeling	 Empirical	Modeling	

1.	Usually	involves	fewer	measurements;	requires	
experimentation	 only	 for	 the	 estimation	 of	
unknown	model	parameters.	

Requires	 extensive	 measurements,	 because	 it	
relies	entirely	on	experimentation	for	the	model	
development.	

2.	Provides	information	about	the	internal	state	of	
the	process.	

Provides	 information	only	 about	 that	portion	of	
the	 process	which	 can	 be	 influenced	 by	 control	
action.	

3.	 Promotes	 fundamental	 understanding	 of	 the	
internal	workings	of	the	process.	

Treats	the	process	like	a	“black	box.”	

4.	Requires	fairly	accurate	and	complete	process	
knowledge.	

Requires	 no	 such	 detailed	 knowledge;	 only	 that	
output	 data	 be	 obtainable	 in	 response	 to	 input	
changes.	

5.	Not	 particularly	 useful	 for	 poorly	 understood	
and/or	complex	processes.	

Quite	often	proves	to	be	the	only	alternative	 for	
modeling	 the	 behavior	 of	 poorly	 understood	
and/or	complex	processes.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 78	

	

6.	Naturally	produces	both	 linear	 and	nonlinear	
process	models.	

Requires	 special	 methods	 to	 produce	 nonlinear	
models.	

	

Figure	10:	Theoretical	vs.	empirical	modeling	

	

Upon	inspection,	we	assert	that	the	systems	development	process	is	empirical:	

	

• Applicable	first	principles	are	not	present	

• The	process	is	only	beginning	to	be	understood	

• The	process	is	complex	

• The	process	is	changing	

	

Most	methodologists	agree	with	this	assertion;	“...you	can’t	expect	a	method	to	tell	you	everything	to	do.	Writing	
software	is	a	creative	process,	like	painting	or	writing	or	architecture...	...	(a	method)	supplies	a	framework	that	
tells	how	to	go	about	it	and	identifies	the	places	where	creativity	is	needed.	But	you	still	have	to	supply	the	
creativity....”[52]	

	

Categorizing	 the	 systems	development	methods	as	 empirical	 is	 critical	 to	 the	effective	management	of	 the	
systems	development	process.			

	

If	 systems	 development	 methods	 are	 categorized	 as	 empirical,	 measurements	 and	 controls	 are	 required	
because	 it	 is	understood	that	 the	 inner	workings	of	 the	method	are	so	 loosely	defined	that	 they	cannot	be	
counted	on	to	operate	predictably.	

	

In	the	past,	 	methods	have	been	provided	and	applied	as	though	they	were	theoretical.	 	As	a	consequence,	
measurements	were	not	relied	upon	and	controls	dependent	upon	the	measurements	weren’t	used.	

	

Many	of	the	problems	in	developing	systems	have	occurred	because	of	this	incorrect	categorization.		When	a	
black	box	process	is	treated	as	a	fully	defined	process,	unpredictable	results	occur.		Also,	the	controls	are	not	
in	place	to	measure	and	respond	to	the	unpredictability.	

	 	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 79	

	

CHAPTER	4:	GETTING	STARTED	WITH	SCRUM	
	

Scrum	has	three	roles,	three	ceremonies,	and	three	artifacts:	

• Roles	–	Product	Owner,	Scrum	Master,	Team	

• Ceremonies	–	Sprint	Planning,	Daily	Scrum,	Sprint	Review	

• Artifacts	–	Product	Backlog,	Sprint	Backlog,	Burndown	Chart	

	

In	order	 to	get	started	with	Scrum,	everyone	needs	 to	understand	roles	and	responsibilities	as	well	as	 the	
operational	flow	of	a	Scrum.	Units	of	work	are	broken	down	into	discrete	intervals	call	Sprints	(sometimes	
called	iterations)	of	30	days	or	less.	Practical	experience	has	shown	that	teams	cannot	effectively	maintain	a	
global	view	of	all	the	pieces	of	a	project	in	more	than	30	day	chunks.	All	Agile	processes	use	iterations	that	
deliver	working	software	 that	 is	 “done”	at	 the	end	of	an	 iteration	 in	 the	sense	 that	 features	completed	are	
potentially	shippable	to	end	users.	This	means	the	software	must	be	tested	to	ensure	that	it	works.	Today,	only	
about	half	the	Scrum	teams	worldwide	can	produce	tested	software	at	the	end	of	a	Sprint.	Extensive	data	from	
a	CMMI	Level	5	company	shows	that	this	failure	mode	tends	to	double	defects	and	double	development	time.	

	

To	effectively	deliver	potentially	shippable	product	at	the	end	of	the	Sprint,	experience	has	show	that:	

1. There	must	be	one	Product	Owner	that	delivers	the	team	a	clear	list	of	consistent	priorities	that	are	
held	fixed	for	the	length	of	a	Sprint.	Decades	of	experience	in	software	engineering	have	shown	that	
giving	 a	 development	 team	 multiple	 priorities	 or	 changing	 priorities	 during	 an	 iteration	 causes	
delayed	decisions	and	excessive	rework.	More	than	50%	reduction	in	productivity	of	such	teams	is	the	
norm.	 Many	 development	 teams	 have	 doubled	 their	 productivity	 in	 the	 first	 month	 of	 Scrum	
implementation	by	fixing	this	problem.	

2. The	Product	Owner	must	have	a	Product	Backlog	of	features	that	are	rank	ordered	by	business	value.	

3. The	work	required	to	implement	the	features	must	be	estimated	by	the	team	that	will	implement	the	
features.	Research	has	shown	that	while	experts	may	accurately	estimate	how	long	it	would	take	them	
to	implement	a	feature,	it	is	impossible	for	them	to	estimate	the	technical	and	domain	knowledge	of	
the	delivery	 team,	 the	competing	priorities	 from	other	projects	 that	 impact	 team	productivity,	 the	
human	factors	on	a	team	such	as	motivation,	conflict	resolution,	team	spirit	that	vary	over	time,	or	the	
loss	or	addition	of	personnel	to	a	team	because	of	hiring,	firing,	vacations,	or	other	factors	that	disrupt	
team	stability.	

4. The	team	must	maintain	a	Burndown	Chart	and	know	how	many	features	can	be	delivered	at	the	end	
of	each	Sprint.	The	estimate	of	the	number	of	features	that	can	be	delivered	at	the	end	of	a	Sprint	is	
know	as	the	team’s	“velocity.”	Sprints	need	to	be	the	same	fixed	length	so	the	Product	Owner	can	use	
the	velocity	to	build	a	release	plan.	Management	and	customers	need	to	know	the	date	of	shipment	of	
a	new	release.	Without	fixed	length	Sprints	with	known	velocity,	release	dates	are	not	predictable.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 80	

	

5. The	team	must	be	able	to	execute	the	Sprint	without	being	disrupted	by	project	leaders,	management,	
or	other	chaos	inducing	forces	in	an	organization.	

	

While	only	about	10%	of	Scrum	teams	wordwide	can	meet	these	basic	standards	today,	any	description	of	how	
to	get	started	with	Scrum	must	address	how	to	step	by	step	move	towards	these	basic	Scrum	practices.	

	 	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 81	

	

SCRUM	ON	LARGE	PROJECTS:	DISTRIBUTED,	OUTSOURCED	SCRUM	
	

FIRST	SCRUM	SCALING	AT	IDX	SYSTEMS	1996-2000	
In	1996,	Jeff	Sutherland	become	SVP	of	Product	Development	at	IDX	Systems	Corporation	with	a	development	
team	that	grew	to	almost	600	people	by	2000.	Scrum	was	introduced	immediately	for	all	developers.	A	new	
organizational	 structure	 was	 created	 to	 coordinate	 Scrum	 teams	 called	 a	 Scrum	 of	 Scrums.	 Previous	
management	 positions	 were	 eliminated	 and	 all	 managers	 became	 team	 leaders.	 Typically,	 Directors	 of	
Engineering	became	Scrum	of	Scrum	leaders.	Ken	Schwaber	provided	consulting	experience	in	various	parts	
of	the	development	organization	during	1996-2000	to	help	introduce	Scrum	to	the	organization.	

	

Business	units	with	product	portfolios	typically	had	less	than	100	developers.	A	Scrum	of	Scrums	was	able	to	
manage	this	size	group	effectively.	At	this	level	a	lead	architect	became	the	Product	Owner	of	the	architecture	
backlog	for	the	business	unit	and	was	the	single	person	responsible	for	the	architecture	for	that	unit.	

	

At	a	SVP	 level,	 there	was	a	 team	of	Directors	and	VPs	 that	met	periodically	 to	 coordinate	activities	across	
business	units.	The	SVP,	having	s	systems	architecture	background,	led	a	virtual	team	of	all	the	business	unit	
architects	to	develop	a	global	architecture	backlog	for	all	business	units.	Sprint	planning	involved	the	entire	
business	unit	once	a	month	and	the	business	unit	architect	was	responsible	for	getting	a	commitment	from	
each	Scrum	team	to	devote	10%	of	the	resources	in	every	Scrum	team	to	addressing	the	global	architecture	
backlog.	This	drove	all	business	units	incrementally	towards	a	common	architectural	framework.	

	

A	similar	virtual	team	strategy	was	used	for	software	integration	across	business	units	and	for	common	quality	
assurance	processes	and	procedures.	The	virtual	team	strategy	allowed	all	senior	developers	to	be	working	
with	a	Scrum	team	during	every	Sprint.	The	approach	was	designed	to	avoid	separate	specialized	teams	and	
to	get	everyone	into	front	line	production.	

	

The	SVP	team	worked	well	to	coordinate	Scrum	of	Scrums	teams	across	business	units.	However,	it	was	not	
optimal	for	driving	a	global	Product	Backlog	across	business	units.	Today,	best	practices	are	to	implement	a	
MetaScrum	 above	 the	 Scrum	 of	 Scrums	 teams.	 The	 MetaScrum	 is	 lead	 by	 the	 Chief	 Product	 Owner	 and	
incorporates	all	stakeholders	in	the	company.	Product	release	strategy	and	the	state	of	every	Sprint	is	reviewed	
at	MetaScrum	meetings.	All	decisions	to	start,	stop,	or	change	Sprints	are	made	there.	Often,	the	CEO	is	the	
Scrum	Master	for	the	MetaScrum.	

	

LINEAR	SCALABILITY	IN	LARGE,	DISTRIBUTED,	AND	OUTSOURCED	SCRUMS	
Two	case	studies	published	in	2007	demonstrate	for	the	first	time	that	a	software	development	process	can	
scale	linearly	across	both	development	team	size	and	geographies.	The	SirsiDynix/StarSoft	Development	Labs	
project	delivered	over	a	million	lines	of	code	with	teams	distributed	across	the	U.S.,	Canada,	and	Russia	[19].	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 82	

	

When	the	development	team	doubled	in	size	by	bringing	on	engineers	in	St.	Petersburg,	Russia,	the	velocity	of	
software	delivery	more	than	doubled.		

	

A	similar	effect	was	noted	by	a	CMMI	Level	5	Scrum	implementation	at	Systematic	Software	Engineering	in	
Denmark	 [20].	 Introducing	Scrum	 increased	productivity	 is	 small	 teams	only	slightly	as	 they	were	already	
Agile.	On	larger	projects,	they	consistently	achieved	the	same	level	of	productivity	per	developer	as	on	small	
teams.	After	achieving	at	80%	reduction	in	planning	costs,	a	50%	reduction	in	total	project	costs,	along	with	
significantly	 increased	 user	 and	 employee	 satisfaction,	 they	 converted	 their	 company-wide	 CMMI	 Level	 5	
process	documentation,	training,	and	implementation	to	Scrum.	

	

At	Agile	2008,	Systematic	Software	Engineering	published	a	more	detailed	paper	on	combining	CMMI	with	
Scrum	to	produce	a	more	disciplined	environment	for	large	projects	while	achieving	the	high	velocity	seen	on	
their	small	Scrum	projects.	This	paper	is	included	and	shows	how	Systematic	has	institutionalized	a	company	
wide	CMMI	Level	5	Scrum	process.	

	

There	are	many	moving	parts	in	an	enterprise	wide	implementation	of	Scrum.	While	a	clear,	consistent	model	
is	achievable	for	any	company,	it	must	be	localized	into	a	specific	company	structure	through	inspection	and	
adaptation,	the	hallmark	of	Scrum.	This	immediately	leads	to	questions	on	how	to	best	organize	the	company	
to	take	advantage	of	Scrum.	It	is	strongly	recommended	to	use	expertise	from	an	experienced	trainer	who	has	
led	multiple	enterprise	Scrum	implementations	to	work	through	best	strategies	for	implementing	enterprise	
Scrum	in	a	specific	company.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 83	

	

AGILE	CAN	SCALE:	INVENTING	AND	REINVENTING	SCRUM	IN	FIVE	COMPANIES	
	

Jeff	Sutherland,	Ph.D.	

PatientKeeper,	Inc.,	2001	

INTRODUCTION	
Agile	development	is	focused	on	delivering	maximum	business	value	in	the	shortest	possible	time.	It	is	well	
known	that	over	half	the	requirements	on	a	typical	software	project	change	during	development	and	about	
half	the	features	in	delivered	software	are	never	used	by	customers.	Adaptive	planning	and	self-organizing	
teams	are	used	to	embrace	changing	requirements	and	avoid	building	features	with	low	return	on	investment.	
The	result	is	faster	delivery,	better	quality,	higher	user	satisfaction,	and	a	more	creative	and	enjoyable	working	
environment	for	developers.	

	

Scrum	derives	from	Japanese	best	practices	in	lean	manufacturing	and	lean	product	development	[1,	14].	The	
goal	of	Scrum	is	 to	achieve	 the	“Toyota	Effect”,	deliver	 four	 times	as	much	software	with	 twelve	 times	 the	
quality	within	a	series	of	short	time	boxes	called	“Sprint's,”	which	last	30	days	or	less.		Scrum	is	characterized	
by	15	minute,	intensive,	daily	meetings	of	a	multidisciplinary	software	delivery	team,	usually	including	product	
marketing,	testers,	software	analysts,	designers,	and	coders,	and	even	deployment	support	staff.		Prior	to	each	
iteration	a	list	of	features	to	be	delivered	called	the	Product	Backlog	is	reprioritized	so	that	maximum	value	
features	 are	 developed	 first.	 Most	 tasks	 required	 to	 complete	 Product	 Backlog	 features	 are	 defined	 and	
estimated	at	the	start	of	the	Sprint	by	the	multidisciplinary	development	team	to	product	the	Sprint	Backlog.	
Some	tasks	require	further	design	or	definition	during	a	Sprint	so	the	Sprint	Backlog	will	dynamically	evolve,	
yet	a	skilled	team	will	estimate	the	amount	of	work	required	to	complete	a	Sprint	with	less	than	20%	error	
using	improve	estimating	techniques	based	on	the	latest	research	on	planning	[31].	

	

A	lean	production	environment	is	based	on	a	“pull”	system	[8]	where	team	members	pull	inventory	into	a	work	
environment	“just	in	time.”	A	the	start	of	a	Sprint	the	team	pulls	the	amount	of	Product	Backlog	into	the	Sprint	
that	they	can	commit	to	complete	during	the	Sprint.	Loading	of	team	members	during	the	Sprint	is	dynamic,	in	
the	sense	that	team	members	chose	their	own	tasks	and	“pull”	from	the	Sprint	Backlog	when	they	are	ready	to	
start	another	task.	Good	teams	“minimize	the	work	in	progress”	by	keeping	as	few	tasks	open	as	possible	to	
avoid	integration	problems	and	missed	dates	at	the	end	of	a	Sprint.		

	

Within	a	Sprint,	problems	and	challenges	are	evaluated	in	the	daily	Scrum	meeting	and	the	team	self	organizes	
in	real	time	to	maximize	the	number	of	production	ready	features	delivered	by	the	team	at	the	end	of	each	
Sprint.	The	daily	meetings	focused	on	answers	to	three	questions	by	each	member	of	the	team	–	What	did	I	do	
yesterday?	What	 will	 I	 do	 today?	What	 blocks,	 problems,	 or	 impediments	 are	 getting	 in	my	way?	 A	well	
functioning	team	will	dynamically	recalculate	the	plan	daily	through	a	brief	discussion	and	provide	enough	
information	for	a	Scrum	Master,	the	team	leader,	to	calculate	a	“Burndown	Chart”	of	work	to	be	completed.		
Team	efforts	to	accelerate	or	decelerate	the	downward	velocity	of	the	burndown	graph	allow	a	team	to	“fly”	
the	project	into	a	fixed	delivery	date.			

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 84	

	

	

A	 typical	 Burndown	 Chart	 is	 illustrated	 below.	 	 It	 consists	 of	 the	 cumulative	 time	 it	 takes	 to	 complete	
outstanding	tasks	for	deliverable	software	for	a	Scrum	sprint.		Each	developer	breaks	down	tasks	into	small	
pieces	and	enters	into	a	backlog	system	work	remaining	on	each	active	task	every	day.		This	could	be	as	simple	
as	 task	 updates	 on	 a	 white	 board	 or	 an	 Excel	 spreadsheet,	 or	 could	 be	 a	 specialized	 tool	 for	 support	 of	
distributed	teams.	The	remaining	work	for	each	task	is	added	up	to	generate	the	cumulative	backlog.	 	Best	
current	methods	require	only	one	minute	of	each	developers	time	each	day	to	update	two	data	items	for	active	
tasks	(percent	complete	and	time	remaining)	allowing	an	automated	system	to	produce	the	Burndown	Chart,	
showing	how	fast	outstanding	backlog	is	decreasing	each	day.		In	the	daily	Scrum	meetings,	the	team	members	
use	information	sharing	to	determine	what	actions	taken	that	day	will	maximize	the	download	movement	of	
the	cumulative	backlog.		Experience	has	shown	that	Scrum	project	planning	will	consistently	produce	a	faster	
path	to	the	end	goal	than	any	other	form	of	project	planning	reported	to	date,	with	less	administrative	overhead	
than	any	previously	reported	approach.	

	

	

																																																											FIGURE	10:	BURNDOWN	CHART		

	

Details	 of	 the	 Scrum	 approach	 have	 been	 carefully	 documented	 elsewhere	 [23].	 Scrum	 is	 the	 only	 Agile	
methodology	that	has	been	formalized	and	published	as	an	organizational	pattern	for	software	development	
[26].	The	process	assumes	that	requirements	will	change	during	the	period	between	initial	specification	and	
delivery	of	a	product.	It	supports	Humphrey’s	Requirements	Uncertainty	Principle	[53],	which	states	that	for	
a	new	software	system,	the	requirements	will	not	be	completely	know	until	after	the	users	have	used	it.	Scrum	
allows	for	Ziv’s	Uncertainty	Principle	in	software	engineering,	which	observes	that	uncertainty	is	inherent	and	
inevitable	in	software	development	processes	and	products	[54].	And	it	accounts	for	Wegner’s	mathematical	
proof	(lemma)	that	it	is	not	possible	to	completely	specify	an	interactive	system	[55].	Most	software	systems	

0
10
20
30
40
50

1 2 3 4 5 6 7 8 9 10

Burndown Chart

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 85	

	

built	 today	 are	 object-oriented	 implementations,	 and	 most	 of	 those	 object-oriented	 systems	 depend	 on	
environmental	inputs	to	determine	process	outputs	(i.e.,	they	are	interactive	systems).	

	

Traditional,	heavyweight	software	methodologies	assume	that	requirements	can	be	specified	in	advance,	that	
they	will	not	change	during	development,	 that	 the	users	know	what	 they	want	before	 they	see	 it,	and	that	
software	development	is	a	predictable,	repeatable	process.	These	assumptions	are	fundamentally	flawed	and	
inconsistent	with	the	mathematical	lemmas	and	principles	cited	above.	As	a	result,	31%	of	software	projects,	
usually	driven	by	a	variant	of	the	waterfall	methodology,	are	terminated	before	completion	[56].	

	

This	article	serves	as	a	short	retrospective	on	the	origins	of	Scrum,	its	evolution	in	five	companies,	and	a	few	
key	learnings	along	the	way.	It	will	provide	a	reference	point	for	further	investigation	and	implementation	of	
Scrum	 for	 those	 interested	 in	using	a	proven,	 scalable,	 lightweight	development	process	 that	 supports	 the	
principles	 of	 the	 Agile	 Alliance	 as	 outlined	 in	 the	 “Manifesto	 for	 Agile	 Software	 Development”	 (see	
www.agilealliance.org).	

	

EASEL	CORPORATION:	THE	FIRST	SCRUM	
Scrum	was	started	in	1993	for	software	teams	at	Easel	Corporation,	where	I	was	VP	of	object	technology.		In	
the	 initial	 Scrum,	 we	 built	 the	 first	 object-oriented	 design	 and	 analysis	 tool	 that	 incorporated	 round-trip	
engineering.	 	 The	 second	 Scrum	 implemented	 the	 first	 product	 to	 completely	 automate	 object-relational	
mapping	in	enterprise	development	environment.		I	was	assisted	by	two	world-class	developers--Jeff	McKenna,	
now	a	Scrum	and	eXtreme	Programming	consultant,	and	John's	Scumniotales,	now	a	development	leader	for	
object-oriented	design	tools	at	Rational	Corporation.	

	

In	1995,	Easel	was	acquired	by	VMARK.	 	 Scrum	continued	 there	until	 I	 joined	 Individual	 in	1996	as	VP	of	
engineering	to	develop	Personal	NewsPage	(now	www.office.com).		I	asked	Ken	Schwaber,	CEO	of	Advanced	
Development	Methodologies,	 to	help	me	 incorporate	Scrum	into	Individual’s	development	process.	 	On	the	
same	year,	I	took	Scrum	to	IDX	Systems	when	I	assumed	the	position	of	senior	VP	of	engineering	and	product	
development	and	CTO.		IDX,	one	of	the	largest	US	healthcare	software	companies,	was	the	proving	ground	for	
multiple	 team	 Scrum	 implementations.	 	 At	 one	 point,	 almost	 600	 developers	were	working	 on	 dozens	 of	
products.	 	In	2000,	Scrum	was	introduced	to	PatientKeeper,	a	mobile/wireless	healthcare	platform	where	I	
became	CTO.		So	I	have	experienced	Scrum	in	five	companies	that	varied	widely	in	size.		They	were	proving	
grounds	for	Scrum	in	all	phases	of	company	growth	from	startup,	to	initial	IPO,	to	mid-sized,	and	then	to	a	large	
company	delivering	enterprise	systems	to	the	marketplace.	

	

“ALL-AT-ONCE”	SOFTWARE	DEVELOPMENT	
There	were	some	key	factors	that	influenced	the	introduction	of	Scrum	at	Easel	Corporation.		The	book	Wicked	
Problems,	Righteous	Solutions	[32]	by	Peter	DeGrace	and	Leslie	Hulet	Stahl	reviewed	the	reasons	why	the	
waterfall	approach	to	software	development	does	not	work	for	software	development	today.		Requirements	
are	not	fully	understood	before	the	project	begins.		The	users	know	what	they	want	only	after	they	see	an	initial	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 86	

	

version	of	the	software.	Requirements	change	during	the	software	construction	process.	And	new	tools	and	
technologies	make	implementation	strategies	unpredictable.	DeGrace	and	Stahl	reviewed	“All-at-Once”	models	
of	software	development,	which	uniquely	fit	object-oriented	implementation	of	software	and	help	to	resolve	
these	challenges.	

	

“All-at-Once”	models	of	software	development	assume	that	the	creation	of	software	is	done	by	simultaneously	
working	on	requirements,	analysis,	design,	coding,	and	testing	and	then	delivering	the	entire	system	all	at	once.	
The	 simplest	All-at-Once	model	 is	 a	 single	 super-programmer	 creating	 and	delivering	 an	 application	 from	
beginning	to	end.		All	aspects	of	the	development	process	reside	in	a	single	person’s	head.	This	is	the	fastest	
way	 to	 deliver	 a	 product	 that	 has	 good	 internal	 architectural	 consistency,	 and	 it	 is	 the	 “hacker”	mode	 of	
implementation.	 The	 next	 level	 of	 approach	 to	 All-at-Once	 development	 is	 handcuffing	 two	 programmers	
together,	as	in	the	XP	practice	of	pair	programming	[24].		Two	developers	deliver	the	entire	system	together.	
This	is	been	shown	to	deliver	better	code	(in	terms	of	usability,	maintainability,	flexibility,	and	extendability)	
faster	than	work	delivered	by	larger	teams.	The	challenge	is	to	achieve	a	similar	productivity	effect	in	the	large	
with	an	entire	team	and	then	with	teams	of	teams.	

	

Our	team	based	All-at-Once	model	was	based	on	both	the	Japanese	approach	to	new	product	development,	
Sashimi,	and	Scrum.	We	were	already	using	production	prototyping	to	build	software.		It	was	implemented	in	
slices	(Sashimi)	where	an	entire	piece	of	fully	integrated	functionality	worked	at	the	end	of	an	iteration.		What	
intrigued	us	was	Hirotaka	Takeuchi	and	Hujiro	Nonaka’s	description	of	the	team-building	process	in	setting	up	
and	managing	a	Scrum	[1].	The	idea	of	building	a	self-empowered	team	in	which	everyone	had	a	global	view	
of	the	product	on	a	daily	basis	seemed	like	the	right	idea.	This	approach	to	managing	the	team,	which	had	been	
so	successful	at	Honda,	Canon,	and	Fujitsu,	resonated	with	the	systems	thinking	approach	being	promoted	by	
Peter	Senge	at	MIT	[16].	

	

We	were	also	impacted	by	recent	publications	in	computer	science.		As	I	alluded	above,	Peter	Wagner	at	Brown	
University	demonstrated	that	it	was	impossible	to	fully	specify	or	test	an	interactive	system,	which	is	designed	
to	respond	to	external	 inputs	(Wegner's	 lemma)	[55].	 	Here	was	mathematical	proof	 that	any	process	 that	
assumed	known	inputs,	as	does	the	waterfall	method,	was	doomed	to	failure	when	building	an	object-oriented	
system.	

	

We	were	prodded	into	setting	up	the	first	Scrum	meeting	after	reading	James	Coplien's	paper	on	Borland's	
development	of	Quattro	Pro	for	Windows	[2].		The	Quattro	team	delivered	one	million	lines	of	C++	code	in	31	
months,	with	a	four	person	staff	growing	to	eight	people	later	in	the	project.	This	was	about	a	thousand	lines	
of	deliverable	code	per	person	per	week,	probably	the	most	productive	project	ever	documented.		The	team	
attained	this	level	of	productivity	by	intensive	interaction	in	daily	meetings	with	project	management,	product	
management,	developers,	documenters,	and	quality	assurance	staff.	

	

SOFTWARE	EVOLUTION	AND	PUNCTUATED	EQUILIBRIUM	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 87	

	

Our	daily	meetings	at	Easel	were	disciplined	in	a	way	that	we	now	understand	as	the	Scrum	pattern	[26].		The	
most	 interesting	 effect	 of	 Scrum	 on	 Easel's	 development	 environment	 was	 an	 observed	 "punctuated	
equilibrium	effect."		A	fully	integrated	component	design	environment	leads	to	rapid	evolution	of	a	software	
system	with	emergent,	adaptive	properties,	 resembling	 the	process	of	punctuated	equilibrium	observed	 in	
biological	species.		

	

Evolutionary	 biologists	 have	 noticed	 that	 change	 occurs	 sharply	 at	 intervals	 separated	 by	 long	 periods	 of	
apparent	 stagnation,	 leading	 to	 the	 concept	 of	 punctuated	 equilibrium	 [6].	 	 Computer	 simulations	 of	 this	
phenomenon	 suggest	 that	 periods	 of	 equilibrium	 are	 actually	 periods	 of	 ongoing	 genetic	 change	 of	 an	
organism.		The	effects	of	that	change	are	not	apparent	until	several	subsystems	evolve	in	parallel	to	the	point	
where	they	can	work	together	to	produce	a	dramatic	external	effect	[10].		This	punctuated	equilibrium	effect	
has	been	observed	by	 teams	working	 in	 a	 component-based	environment	with	adequate	business	process	
engineering	tools,	and	the	Scrum	development	process	accentuates	the	effect.	

	

By	having	every	member	of	the	team	see	every	day	what	every	other	team	member	was	doing,	we	began	to	see	
how	we	could	accelerate	each	other's	work.		For	instance,	one	developer	commented	that	if	he	changed	a	few	
lines	 in	code,	he	could	eliminate	days	of	work	 for	another	developer.	 	This	effect	was	so	dramatic	 that	 the	
project	accelerated	the	point	where	it	had	to	be	slowed	down.		This	hyperproductive	state	was	seen	in	several	
subsequent	Scrum's,	but	never	went	so	dramatic	as	the	one	at	Easel.			

	

STIMULATING	SOFTWARE	EVOLUTION	WITH	SYNCSTEPS	
	

The	first	Scrum	worked	from	a	unique	view	of	the	software	system.		A	project	domain	can	be	viewed	as	a	set	
of	packages	that	will	form	a	release.		Packages	are	what	the	user	perceives	as	pieces	of	functionality,	and	they	
evolve	out	of	work	on	topic	areas	(see	Figure	2).		Topic	areas	are	business	object	components.		Changes	are	
introduced	into	the	system	by	introducing	a	unit	of	work	that	alters	a	component.		Refactoring	often	causes	a	
single	change	to	ripple	throughout	the	system.	This	unit	of	work	in	the	initial	Scrum	was	called	a	SynchStep.		

	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 88	

	

	

	

Figure	2:	View	of	a	software	systems	as	seen	by	the	first	Scrum	

	

System	evolution	proceeds	in	SyncSteps	(see	Figure	3).		After	one	or	more	SyncSteps	have	gone	to	completion	
and	forced	some	refactoring	throughout	the	system,	a	new	package	of	functionality	emerges	that	is	observable	
to	the	user.		These	SyncSteps	are	similar	to	genetic	mutations.		Typically,	several	interrelated	components	must	
mutate	in	concert	to	produce	a	significant	new	piece	of	functionality.		This	new	functionality	appears	as	the	
punctuated	equilibrium	effect	to	builders	in	the	system.		For	a	period	of	time,	the	system	is	stable	with	no	new	
behavior.		Then	when	a	certain	(somewhat	unpredictable)	SyncStep	completes,	the	whole	system	pops	up	to	a	
new	level	of	functionality,	often	surprising	the	development	team.			

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 89	

	

	

Figure	3:	Firing	a	SyncStep	causes	a	ripple	through	the	system	that	triggers	emission	of	a	package	of	
functionality	visible	to	the	user.	

	

This	 aspect	 of	 self-organization	 is	 now	understood	 as	 a	 type	 of	 Set-Based	Concurrent	 Engineering	 (SBCE)	
which	is	practiced	at	Toyota	[57].	Developers	consider	sets	of	possible	solutions	and	gradually	narrow	the	set	
of	possibilities	to	converge	on	a	final	solution.	Here,	decisions	on	how	and	where	to	implement	a	feature	in	a	
set	of	components	was	delayed	until	the	last	possible	moment.	The	most	evolved	component	is	selected	“just	
in	 time”	 to	 absorb	 new	 functionality,	 resulting	 in	 minimal	 coding	 and	 a	 more	 elegant	 architecture.	 Thus	
emergent	architecture,	a	core	principle	in	all	Agile	processes,	is	not	random	evolution.	Properly	implemented,	
it	is	an	SBCE	technique	viewed	as	a	best	business	practice	in	some	of	the	world’s	leading	corporations.	

	

ACHIEVING	A	SUSTAINABLE	HYPERPRODUCTIVE	STATE	
	

The	 key	 to	 entering	 a	 hyperproductive	 state	 was	 not	 just	 the	 Scrum	 organizational	 pattern.	 	 It	 was	 a	
combination	of	(1)	the	skill	of	the	team,	(2)	the	flexibility	of	a	Smalltalk	development	environment,	(3)	the	
implementation	 of	 what	 are	 now	 know	 as	 XP	 engineering	 practices,	 and	 (4)	 the	 way	 we	 systematically	
stimulated	production	prototypes	that	rapidly	evolved	into	a	deliverable	product.			

	

Furthermore,	in	the	hyperproductive	state,	the	initial	Scrum	entered	what	professional	athletes	and	martial	
artists	call	"the	zone."		No	matter	what	happened	or	what	problems	arose,	the	response	of	the	team	always	was	
far	better	than	the	response	of	any	individual.		It	was	reminiscent	of	the	Celtics	basketball	team	at	their	peak,	
when	 they	 could	do	no	wrong.	 	 The	 impact	 of	 entering	 the	 zone	was	not	 just	 hyperproductivity.	 	 Peoples	
personal	lives	were	changed.		Team	members	said	they	would	never	forget	working	on	the	project,	and	they	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 90	

	

would	always	be	looking	for	another	experience	like	it.		It	induced	open,	team	oriented,	fun-loving	behavior	in	
unexpected	persons.		Those	individuals	who	could	not	function	well	in	an	open,	hyperproductive	environment	
self-selected	themselves	out	of	the	team	by	finding	other	jobs.		This	reinforced	positive	team	behavior	similar	
to	 biological	 systems,	 which	 select	 for	 fitness	 to	 the	 environment,	 resulting	 in	 improved	 performance	 of	
individual	organisms.	

	

VMARK:	THE	FIRST	SENIOR	MANAGEMENT	SCRUM	
When	 Easel	 Corporation	was	 acquired	 by	 VMARK	 (subsequenctly	 Informix,	 now	 Ascension	 Software)	 the	
original	 Scrum	 team	 continued	 its	work	 on	 the	 same	 product.	 The	 VMARK	 senior	management	 team	was	
intrigued	by	Scrum	and	asked	me	to	run	a	weekly	senior	management	team	Scrum	to	drive	all	the	company’s	
products	to	the	Internet.	These	meetings	started	in	1995,	and	within	a	few	months,	the	team	had	caused	the	
introduction	of	two	new	Internet	products	and	repositioned	current	products	as	Internet	applications.	Some	
members	of	this	team	left	VMARK	to	become	innovators	in	emerging	Internet	companies,	so	Scrum	had	an	
early	impact	on	the	Internet.	

	

It	was	also	at	VMARK	that	Ken	Schwaber	was	introduced	to	Scrum.	Ken	and	I	had	worked	together	on	and	off	
for	years.	I	showed	him	Scrum	and	he	agreed	it	worked	better	that	other	project	management	approaches	and	
was	 similar	 to	how	he	built	 project	management	 software	 in	his	 company.	He	quickly	 sold	 off	 the	project	
management	software	business	and	worked	on	bringing	Scrum	to	the	software	industry	at	large.	His	work	has	
had	an	incredible	effect	on	deploying	Scrum	worldwide.	

	

INDIVIDUAL:	THE	FIRST	INTERNET	SCRUM	
In	the	spring	of	1996,	I	returned	to	Individual,	Inc.,	a	company	I	co-founded	as	VP	of	Engineering	in	1988.	Much	
of	the	Scrum	experience	at	Individual	has	been	documented	by	Ken	Schwaber	[18].	The	most	impressive	thing	
to	me	about	Scrum	at	Individual	was	not	that	the	team	delivered	two	new	Internet	products	–	and	multiple	
releases	of	one	of	the	products	–	in	a	single	quarter.	It	was	the	fact	that	Scrum	eliminated	several	hours	a	day	
of	senior	management	meeting	 time	starting	 the	day	that	Scrum	began,	within	a	week	of	my	arrival	at	 the	
company.	 Because	 Individual	 had	 just	 gone	 public	 at	 the	 beginning	 of	 the	 Internet	 explosion,	 there	were	
multiple	competing	priorities	and	constant	revision	of	market	strategy.	As	a	result,	the	development	team	was	
constantly	 changing	priorities	 and	unable	 to	deliver	product.	The	management	 team	was	meeting	daily	 to	
determine	status	of	priorities	that	were	viewed	differently	by	every	manager.	These	meetings	were	eliminated	
and	the	Scrum	meetings	became	the	focus	for	all	decisionmaking.		

	

It	was	incredibly	productive	to	force	all	decisions	to	occur	in	the	daily	Scrum	meeting.	If	anyone	wanted	to	
know	the	status	of	specific	project	deliverables	or	wanted	to	influence	any	priority,	he	or	she	could	only	do	it	
in	the	daily	Scrum	meeting.	I	remember	the	senior	VP	of	marketing	sat	in	on	every	meeting	for	a	couple	of	
weeks	sharing	her	desperate	concern	about	meeting	Internet	deliverables	and	timetables.	The	effect	on	the	
team	was	not	 to	 immediately	respond	to	her	despair.	Over	a	period	of	 two	weeks,	 the	 team	self-organized	
around	a	plan	to	meet	her	priorities	with	achievable	technical	delivery	dates.	When	she	agreed	to	the	plan,	she	
no	longer	had	to	attend	any	Scrum	meetings.	The	Scrum	reported	status	on	the	Web	with	green	lights,	yellow	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 91	

	

lights,	and	red	lights	for	all	pieces	of	functionality.	In	this	way,	the	entire	company	knew	status	in	real	time,	all	
the	time.	This	transparency	of	information	has	become	a	key	characteristic	of	Scum.	

	

IDX	SYSTEMS:	THE	FIRST	SCRUM	IN	THE	LARGE	
During	the	summer	of	1996,	IDX	Systems	hired	me	as	senior	VP	of	engineering	and	product	development.	IDX	
had	over	4,000	customers	and	was	one	of	 the	 largest	US	healthcare	software	companies,	with	hundreds	of	
developers	 working	 on	 dozens	 of	 products.	 Here	 was	 an	 opportunity	 to	 extend	 Scrum	 to	 large-scale	
development.	

	

The	approach	at	IDX	was	to	turn	the	entire	development	group	into	an	interlocking	set	of	Scrums.	Every	part	
of	the	organization	was	team	based	including	the	management	team,	which	included	two	vice	presidents,	a	
senior	architect,	and	several	directors.	Front-line	Scrums	met	daily.	A	Scrum	of	Scrums,	which	included	the	
team	leaders	of	each	Scrum	in	a	product	line,	met	weekly,	The	management	Scrum	met	monthly.	

	

The	key	learning	at	IDX	was	that	Scrum	scales	to	any	size.	With	dozens	of	teams	in	operation,	the	most	difficult	
problem	was	ensuring	the	quality	of	the	Scrum	process	in	each	team,	particularly	when	the	entire	organization	
had	to	learn	Scrum	all	at	once.	IDX	was	large	enough	to	bring	in	productivity	experts	to	monitor	throughput	on	
every	project.	While	most	teams	were	only	able	to	double	the	industry	average	in	function	points	per	month	
delivered,	several	teams	moved	into	a	hyperproductive	state,	producing	deliverable	functionality	at	four	to	five	
times	the	industry	average.	These	teams	became	shining	stars	in	the	organization	and	examples	for	the	rest	of	
the	organization	to	follow.	

	

One	 of	 the	 most	 productive	 teams	 at	 IDX	 was	 the	 Web	 Framerwork	 team	 that	 built	 a	 web	 frontend	
infrastructure	 for	 all	 products.	 The	 infrastructure	 was	 designed	 to	 host	 all	 IDX	 applications,	 as	 well	 as	
seamlessly	interoperate	with		end	user	or	third	party	applications.	It	was	a	distributed	team	with	developers	
in	 Boston,	 Seattle,	 and	 Vermont	 who	 met	 by	 teleconference	 in	 a	 daily	 Scrum	 meeting.	 The	 geographic	
transparency	of	 this	model	produced	 the	same	high	performance	as	 co-located	 teams	and	has	become	 the	
signature	of	hyperproductive	distributed/outsourced	Scrums	[29].	

	

PATIENTKEEPER	SCRUM:	THE	FIRST	ENTERPRISE	SCRUM	
	

In	 early	 2000,	 I	 joined	PatientKeeper,	 Inc.	 as	 chief	 technology	 officer	 and	 began	 introducing	 Scrum	 into	 a	
startup	company.	 I	was	 the	21st	employee,	and	we	grew	the	development	 team	from	a	dozen	people	 to	45	
people	in	six	months.	PatientKeeper	deploys	mobile	devices	in	healthcare	institutions	to	capture	and	process	
financial	and	clinical	data.	Server	technology	synchronizes	the	mobile	devices	and	moves	data	to	and	from	
multiple	back-end	legacy	systems.	A	robust	technical	architecture	provides	enterprise	application	integration	
to	 hospital	 and	 clinical	 systems.	 Data	 is	 forward-deployed	 from	 these	 systems	 in	 a	 PatientKeeper	 clinical	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 92	

	

repository.	Server	technologies	migrate	changes	from	our	clinical	repository	to	a	cache	and	then	to	data	storage	
on	the	mobile	device.	PatientKeeper	proves	that	Scrum	works	equally	well	across	technology	implementations.	

	

The	key	learning	at	PatientKeeper	has	involved	the	introduction	of	eXtreme	Programming	techniques	as	a	way	
to	 implement	code	delivered	by	a	Scrum	organization.	While	all	 teams	seem	to	 find	 it	easy	to	 implement	a	
Scrum	organizational	process,	they	do	not	always	find	it	easy	to	introduce	XP.	We	were	able	to	do	some	team	
programming	and	constant	testing	and	refactoring,	particularly	as	we	migrated	all	development	to	Java	and	
XML.	It	was	more	difficult	to	introduce	these	ideas	when	developers	were	working	in	C	and	C++.	After	a	year	
of	 Scrum	meetings	 in	 all	 areas	 of	 development,	 processes	matured	 enough	 to	 capitalize	 on	 Scrum	project	
management	techniques,	which	were	fully	automated.	

	

Complete	automation	and	transparency	of	data	allowed	PatientKeeper	to	multithread	Sprints	through	multiple	
teams.	That	in	combination	with	implementing	a	MetaScrum	of	senior	stakeholders	in	the	company	allowed	
PatientKeeper	 to	 run	 from	 top	 to	 bottom	 as	 a	 Scrum	 and	 become	 the	 first	 Scrum	 company	 to	 enter	 the	
hyperproductive	state,	delivering	over	45	production	releases	a	year	of	a	large	enterprise	software	platform.	
This	became	the	prototype	for	the	All-at-Once,	or	Type	C	Scrum,	implemented	in	at	least	five	companies	by	
2006	[41].		

	

CONCLUSIONS	
	

After	introducing	Scrum	into	five	different	companies	of	different	sizes	and	with	different	technologies,	I	can	
confidently	say	that	Scrum	works	in	any	environment	and	can	scale	into	programming	in	the	large.	In	all	cases,	
it	will	radically	improve	communication	and	delivery	of	working	code.	The	next	challenge	for	Scrum,	in	my	
view,	is	to	provide	a	tight	integration	of	the	Scrum	organizational	pattern	with	XP	programming	techniques,	
combined	 with	 innovative	 approaches	 to	 distributed	 teams	 and	 stimulation	 of	 rapid	 software	 system	
evolution.	I	believe	these	strategies	can	generate	a	hyperproductive	Scrum	on	a	predictable	basis.	The	first	
Scrum	did	this	intuitively	and	that	was	its	key	to	extreme	performance	and	a	life-changing	experience.		

	 	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 93	

	

	

DISTRIBUTED	SCRUM:	AGILE	PROJECT	MANAGEMENT	WITH	OUTSOURCED	
DEVELOPMENT	TEAMS	
	

	

						Jeff	Sutherland,	Ph.D.												Anton	Viktorov	 													Jack	Blount										Nikolai	Puntikov	

											Patientkeeper																		StarSoft	Dev.	Labs													SirsiDynix											StarSoft	Dev.	Labs																								

								Newton,	MA,	US														St.	Petersburg,	Russia						Provo,	UT,	USA			St.	Petersburg,	Russia					

jeff.sutherland@computer.org						anton.viktorov@starsoftlabs.com						jack@dynix.com			nick@starsoftlabs.com	

ABSTRACT	
Agile	 project	management	 with	 Scrum	 derives	 from	 best	 business	 practices	 in	 companies	 like	 Fuji-Xerox,	
Honda,	Canon,	and	Toyota.	Toyota	routinely	achieves	four	times	the	productivity	and	12	times	the	quality	of	
competitors.	 Can	 Scrum	do	 the	 same	 for	 globally	 distributed	 teams?	 Two	Agile	 companies,	 SirsiDynix	 and	
StarSoft	Development	Laboratories	achieved	comparable	performance	developing	a	Java	application	with	over	
1,000,000	lines	of	code.	During	2005,	a	distributed	team	of	56	Scrum	developers	working	from	Provo,	Utah;	
Waterloo,	Canada;	and	St.	Petersburg,	Russia,	delivered	671,688	lines	of	production	Java	code.	At	15.3	function	
points	 per	 developer/month,	 this	 is	 the	 most	 productive	 Java	 project	 ever	 documented.	 SirsiDynix	 best	
practices	are	similar	to	those	observed	on	distributed	Scrum	teams	at	IDX	Systems,	radically	different	than	
those	promoted	by	PMBOK,	and	counterintuitive	to	practices	advocated	by	some	Scrum	training.	This	paper	
analyzes	and	recommends	best	practices	for	globally	distributed	Agile	teams.	

INTRODUCTION	
Scrum	is	an	Agile	software	development	process	designed	to	add	energy,	focus,	clarity,	and	transparency	to	
project	teams	developing	software	systems.	It	leverages	artificial	life	research	[6]	by	allowing	teams	to	operate	
close	to	the	edge	of	chaos	to	foster	rapid	system	evolution.	It	capitalizes	on	robot	subsumption	architectures	
[5]	by	enforcing	a	simple	set	of	rules	that	allows	rapid	self-organization	of	software	teams	to	produce	systems	
with	evolving	architectures.	A	properly	implemented	Scrum	was	designed	to	increase	speed	of	development,	
align	 individual	 	 and	organization	objectives,	 create	 a	 culture	driven	by	performance,	 support	 shareholder	
value	 creation,	 achieve	 stable	 and	 consistent	 communication	 of	 performance	 at	 all	 levels,	 and	 enhance	
individual	development	and	quality	of	life.		

Scrum	for	software	development	teams	began	at	Easel	Corporation	 in	1993	and	was	used	to	build	the	 first	
object-oriented	 design	 and	 analysis	 (OOAD)	 tool	 that	 incorporated	 round-trip	 engineering.	 In	 a	 Smalltalk	
development	environment,	code	was	auto-generated	from	a	graphic	design	tool	and	changes	to	the	code	from	
the	Smalltalk	integrated	development	environment	(IDE)	were	immediately	reflected	back	into	design.		

A	development	process	was	needed	to	support	enterprise	teams	where	visualization	of	design	immediately	
generated	working	code.	This	led	to	an	extensive	review	of	the	computer	science	literature	and	dialogue	with	
leaders	of	hundreds	of	software	development	projects.	Key	factors	that	influenced	the	introduction	of	Scrum	
at	Easel	Corporation	were	fundamental	problems	inherent	in	software	development:	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 94	

	

	

• Uncertainty	 is	 inherent	 and	 inevitable	 in	 software	 development	 processes	 and	 products	 -	 Ziv’s	
Uncertainty	Principle	[54]		

• For	a	new	software	system	the	requirements	will	not	be	completely	known	until	after	the	users	have	
used	it	-	Humphrey’s	Requirements	Uncertainty	Principle	[58]		

• It	is	not	possible	to	completely	specify	an	interactive	system	–	Wegner’s	Lemma	[55]	

• Ambiguous	 and	 changing	 requirements,	 combined	 with	 evolving	 tools	 and	 technologies	 make	
implementation	strategies	unpredictable.	

• “All-at-Once”	 models	 of	 software	 development	 uniquely	 fit	 object-oriented	 implementation	 of	
software	 and	 help	 resolve	 these	 challenges.	 They	 assume	 the	 creation	 of	 software	 involves	
simultaneously	work	on	requirements,	analysis,	design,	coding,	and	testing,	then	delivering	the	entire	
system	all	at	once	[32].	

	

“ALL-AT-ONCE”	DEVELOPMENT	MODELS	
The	simplest	“All-at-Once”	model	 is	a	single	super-programmer	creating	and	delivering	an	application	from	
beginning	 to	 end.	 This	 can	 be	 the	 fastest	 way	 to	 deliver	 a	 product	 that	 has	 good	 internal	 architectural	
consistency	and	is	the	“hacker”	model	of	implementation.	For	example,	in	a	“skunk	works”	project	prior	to	the	
first	Scrum,	a	single	individual	surrounded	by	a	support	team	spent	two	years	writing	every	line	of	code	for	the	
Matisse	object	database	[59]	used	to	drive	$10B	nuclear	reprocessing	plants	worldwide.	At	less	than	50,000	
lines	of	code,	the	nuclear	engineers	said	it	was	the	fastest	and	most	reliable	database	ever	benchmarked	for	
nuclear	plants.		

IBM	documented	a	variant	of	this	approach	called	the	Surgical	Team	and	considered	it	the	most	productive	
approach	to	software	development	[33].	The	Surgical	Team	concept	has	a	fatal	flaw	in	that	there	are	at	most	
one	or	two	individuals	even	in	a	large	company	that	can	execute	this	model.	For	example,	it	took	three	years	
for	a	competent	team	of	developers	to	understand	the	conceptual	elegance	of	the	Matisse	object	server	well	
enough	to	maintain	it.	The	single-programmer	model	does	not	scale	well	to	large	projects.	

The	next	level	of		“All-at-Once”	development	is	handcuffing	two	programmers	together.	Pair	programming,	an	
eXtreme	Programming	practice	[24],	is	an	implementation	of	this.	Here,	two	developers	working	at	the	same	
terminal	deliver	a	component	of	the	system	together.	This	has	been	shown	to	deliver	better	code	(usability,	
maintainability,	flexibility,	extendibility)	faster	than	two	developers	working	individually	[34].	The	challenge	
is	to	achieve	a	similar	productivity	effect	with	more	than	two	people.		

Scrum,	a	scalable,	 team-based	“All-at-Once”	model,	was	motivated	by	the	 Japanese	approach	to	team-based	
new	 product	 development	 combined	 with	 simple	 rules	 to	 enhance	 team	 self-organization	 (see	 Brooks’	
subsumption	architecture	[5]).	At	Easel,	the	development	team	was	already	using	an	iterative	and	incremental	
approach	 to	 building	 software	 [35].	 Features	 were	 implemented	 in	 slices	 where	 an	 entire	 piece	 of	 fully	
integrated	 functionality	worked	 at	 the	 end	 of	 an	 iteration.	What	 intrigued	 us	was	 Takeuchi	 and	Nonaka’s	
description	of	the	team-building	process	for	setting	up	and	managing	a	Scrum	[1].	The	idea	of	building	a	self-
empowered	team	in	which	a	daily	global	view	of	the	product	caused	the	team	to	self-organize	seemed	like	the	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 95	

	

right	idea.	This	approach	to	managing	the	team,	which	had	been	so	successful	at	Honda,	Canon,	and	Fujitsu,	
also	resonated	with	research	on	systems	thinking	by	Professor	Senge	at	MIT	[16].	

	

HYPERPRODUCTIVITY	IN	SCRUM	
Scrum	was	designed	to	allow	average	developers	to	self-organize	into	high	performance	teams.	The	first	Scrum	
achieved	 a	hyperproductive	 state	 in	1993-1994	because	of	 three	primary	 factors.	The	 first	was	 the	 Scrum	
process	itself,	characterized	by	15	minute	daily	meetings	where	each	person	answers	three	questions	–	what	
did	you	accomplish	yesterday,	what	will	you	do	today,	and	what	impediments	are	getting	in	your	way?	This	is	
now	part	of	the	standard	Scrum	organizational	pattern	[26].	Second,	the	team	implemented	all	XP	engineering	
processes	[24]	including	pair	programming,	continuous	builds,	and	aggressive	refactoring.	And	third,	the	team	
systematically	stimulated	rapid	evolution	of	the	software	system.		

	

One	of	the	most	interesting	complexity	phenomena	observed	in		the	first	Scrum	was	a	“punctuated	equilibrium”	
effect	[36].	This	phenomenon	occurs	in	biological	evolution	when	a	species	is	stable	for	long	periods	of	time	
and	then	undergoes	a	sudden	jump	in	capability.	Danny	Hillis	simulated	this	effect	on	an	early	super-computer,	
the	Connection	Machine	[60].	

	

“The	artificial	organisms	in	Hillis’s	particular	world	evolved	not	by	steady	progress	of	hill	climbing	but	by	the	
sudden	leaps	of	punctuated	equilibrium…	With	artificial	organisms	Hillis	had	the	power	to	examine	and	analyze	
the	 genotype	 as	 easily	 as	 the	 realized	phenotypes…	While	 the	population	 seemed	 to	be	 resting	during	 the	
periods	of	equilibrium	…	the	underlying	genetic	makeup	was	actively	evolving.	The	sudden	increase	in	fitness	
was	no	more	an	instant	occurrence	than	the	appearance	of	a	newborn	indicates	something	springing	out	of	
nothing;	 the	population	 seemed	 to	be	 gestating	 its	next	 jump.	 Specifically,	 the	 gene	pool	 of	 the	population	
contained	a	set	of	epistatic	genes	that	could	not	be	expressed	unless	all	were	present;	otherwise	the	alleles	for	
these	genes	would	be	recessive.”	[61]	

	

Using	Scrum	with	a	fully	integrated	component	design	environment	leads	to	unexpected,	rapid	evolution	of	a	
software	 system	 with	 emergent,	 adaptive	 properties	 resembling	 the	 process	 of	 punctuated	 equilibrium.	
Sudden	 leaps	 in	 functionality	 resulted	 in	 earlier	 than	 expected	 delivery	 of	 software	 in	 the	 first	 Scrum.	
Development	tasks,	originally	planned	to	take	days,	could	often	be	accomplished	in	hours	using	someone	else’s	
code	as	a	starting	point.	

	

This	 aspect	 of	 self-organization	 is	 now	 understood	 as	 a	 type	 of	 Set-Based	 Concurrent	 Engineering	 (SBCE)		
practiced	 at	 Toyota	 [57].	 Developers	 consider	 sets	 of	 possible	 solutions	 and	 gradually	 narrow	 the	 set	 of	
possibilities	to	converge	on	a	final	solution.	Decisions	on	how	and	where	to	implement	a	feature	is	delayed	until	
the	last	possible	moment.	The	most	evolved	component	is	selected	“just	in	time”	to	absorb	new	functionality,	
resulting	in	minimal	coding	and	a	more	elegant	architecture.	Thus	emergent	architecture,	a	core	principle	in	all	
Agile	 processes,	 is	 not	 random	evolution.	 Properly	 implemented,	 it	 is	 an	 SBCE	 technique	 viewed	 as	 a	 best	
business	practice	in	some	of	the	world’s	leading	corporations.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 96	

	

	

DISTRIBUTED,	OUTSOURCED	SCRUM	
	

Scrum	was	designed	to	achieve	a	hyperproductive	state	where	productivity	increases	by	an	order	of	magnitude	
over	industry	averages.	Many	small,	collocated	teams	have	achieved	this	effect.	The	question	for	this	paper	is	
whether	a	large,	distributed,	outsourced	team	can	achieve	the	hyperproductive	state.	

	

U.S.,	European,	or	Japanese	companies	often	outsource	software	development	to	Eastern	Europe,	Russia,	or	the	
Far	 East.	 Typically,	 remote	 teams	 operate	 independently	 and	 communication	 problems	 limit	 productivity.	
While	 there	 is	a	 large	amount	of	published	research	on	project	management,	distributed	development,	and	
outsourcing	strategies	as	isolated	domains,	there	are	few	detailed	studies	of	best	project	management	practices	
on	large	systems	that	are	both	distributed	and	outsourced.	

	

Current	recommended	Scrum	practice	is	for	local	Scrum	teams	at	all	sites	to	synchronize	once	a	day	via	a	Scrum	
of	 Scrums	 meeting.	 Here	 we	 describe	 something	 rarely	 seen.	 At	 SirsiDynix,	 all	 Scrum	 teams	 consist	 of	
developers	from	multiple	sites.	While	some	Agile	companies	have	created	geographically	transparency	on	a	
small	 scale,	 SirsiDynix	uses	 fully	 integrated	Scrum	 teams	with	over	50	developers	 in	 the	U.S.,	 Canada,	 and	
Russia.	This	strategy	helped	build	a	new	implementation	of	platform	and	system	architecture	for	a	complex	
Integrated	Library	System	(ILS).	The	ILS	system	is	similar	to	a	vertical	market	ERP	system	with	a	public	portal	
interface	used	by	more	than	200	million	people.		

	

Best	 practices	 for	 distributed	 Scrum	 seen	 on	 this	 project	 consist	 of	 (1)	 daily	 Scrum	 team	meetings	 of	 all	
developers	from	multiple	sites,	(2)	daily	meetings	of	Product	Owner	team	(3)	hourly	automated	builds	from	
one	 central	 repository,	 (4)	no	distinction	between	developers	 at	 different	 sites	 on	 the	 same	 team,	 (5)	 and	
seamless	 integration	of	XP	practices	 like	pair	programming	with	Scrum.	While	 similar	practices	have	been	
implemented	on	small	distributed	Scrum	teams	[40]	this	 is	the	first	documented	project	that	demonstrates	
Scrum	hyperproductivity	for	large	distributed/outsourced	teams	building	complex	enterprise	systems.	

	

DISTRIBUTED TEAM MODELS
	

Here	we	consider	three	distributed	Scrum	models	commonly	observed	in	practice:	

	

• Isolated	Scrums	-	Teams	are	isolated	across	geographies.	In	most	cases	off-shore	teams	are	not	cross-
functional	and	may	not	be	using	the	Scrum	process.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 97	

	

• Distributed	Scrum	of	Scrums	–	Scrum	teams	are	isolated	across	geographies	and	integrated	by	a	Scrum	
of	Scrums	that	meets	regularly	across	geographies.	

• Totally	 Integrated	 Scrums	 –	 Scrum	 teams	 are	 cross-functional	 with	 members	 distributed	 across	
geographies.	In	the	SirsiDynix	case,	the	Scrum	of	Scrums	was	localized	with	all	Scrum	Masters	in	Utah.	

	

Most	outsourced	development	efforts	use	a	degenerative	form	of	the	Isolated	Scrums	model	where	outsourced	
teams	are	not	cross-functional	and	not	Agile.	Requirements	may	be	created	in	the	U.S.	and	developed	in	Dubai,	
or	development	may	occur	in	Germany	and	quality	assurance	in	India.	Typically,	cross-cultural	communication	
problems	are	compounded	by	differences	in	work	style	in	the	primary	organization	vs.	the	outsourced	group.	
In	the	worst	case,	outsourced	teams	are	not	using	Scrum	and	their	productivity	is	typical	of	waterfall	projects	
further	delayed	by	cross-continent	communications	lag	time.	Implementations	of	Scrum	in	a	data	rich	CMMI	
Level	5	company	simultaneously	running	waterfall,	incremental,	and	iterative	projects,	showed	productivity	of	
Scrum	teams	was	at	 least	double	that	of	waterfall	 teams,	even	with	CMMI	Level	5	reporting	overhead	[62].	
Outsourced	teams	not	using	Scrum	will	typically	achieve	less	than	half	the	velocity	of	the	primary	site	using	
Scrum.	

	

	

	

Figure	11:	Strategies	for	distributed	Scrum	teams	[12].	

	

The	latest	thinking	in	the	Project	Management	Institute	Guide	to	the	Project	Management	Body	of	Knowledge	
(PMBOK)	 models	 is	 a	 degenerative	 case	 of	 isolated	 non-Scrum	 teams	 [63].	 This	 is	 a	 spiral	 waterfall	
methodology	which	layers	the	Unified	Modeling	Language	(UML)	and	the	Rational	Unified	Process	(RUP)	onto	
teams	which	are	not	cross-functional	[64].	It	partitions	work	across	teams,	creates	teams	with	silos	of	expertise,	
and	incorporates	a	phased	approach	laden	with	artifacts	that	violate	the	principles	of	lean	development	[13].		

	

Best	 practice	 is	 a	Distributed	 Scrum	of	 Scrums	model.	 This	model	 partitions	work	 across	 cross-functional,	
isolated	 Scrum	 teams	while	 eliminating	most	 dependencies	 between	 teams.	 Scrum	 teams	 are	 linked	 by	 a	
Scrum-of-Scrums	where	Scrum	Masters	(team	leaders/project	managers)	meet	regularly	across	locations.	This	

Isolated Scrums Teams

Distributed Scrum of Scrums

Integrated Scrums

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 98	

	

encourages	 communication,	 cooperation,	 and	 cross-fertilization	 and	 is	 appropriate	 for	newcomers	 to	Agile	
development.		

	

An	Integrated	Scrums	model	has	all	teams	fully	distributed	and	each	team	has	members	at	multiple	locations.	
While	this	appears	to	create	communication	and	coordination	burdens,	the	daily	Scrum	meetings	help	to	break	
down	cultural	barriers	and	disparities	in	work	styles.	On	large	enterprise	implementations,	it	can	organize	the	
project	 into	 a	 single	 whole	 with	 an	 integrated	 global	 code	 base.	 Proper	 implementation	 of	 this	 approach	
provides	location	transparency	and	performance	characteristics	similar	to	small	co-located	teams.	A	smaller,	
but	similar,	distributed	team	at	IDX	Systems	Corporation	during	1996-2000	achieved	almost	ten	times	industry	
average	 performance	 [40].	 The	 SirsiDynix	 model	 approached	 this	 level	 of	 performance	 for	
distributed/outsourced	 Integrated	 Scrums.	 It	 appears	 to	 be	 the	 most	 productive	 distributed	 team	 ever	
documented	for	a	large	Java	enterprise	system	with	more	than	one	million	lines	of	code.	This	Integrated	Scrums	
model	is	recommended	for	experienced	Agile	teams	at	multiple	locations.	

	

SIRSIDYNIX CASE STUDY
SirsiDynix	has	approximately	4,000	library	and	consortia	clients,	serving	over	200	million	people	through	over	
20,000	library	outlets	in	the	Americas,	Europe,	Africa,	the	Middle	East	and	Asia-Pacific.	Jack	Blount,	President	
and	CEO	of	Dynix	and	now	CTO	of	the	merged	SirsiDynix	company,	negotiated	an	outsource	agreement	with	
StarSoft	 who	 staffed	 the	 project	 with	 over	 20	 qualified	 engineers	 in	 60	 days.	 Significant	 development	
milestones	were	completed	in	a	few	weeks	and	joint	development	projects	are	efficiently	tracked	and	continue	
to	be	on	schedule.		

	

StarSoft	 Development	 Labs,	 Inc.	 is	 a	 software	 outsourcing	 service	 provider	 in	 Russia	 and	 Eastern	 Europe.	
Headquartered	in	Cambridge,	Massachusetts,	USA,	StarSoft	operates	development	centers	 in	St.	Petersburg,	
Russia	 and	 Dnepropetrovsk,	 Ukraine,	 employing	 over	 450	 professionals.	 StarSoft	 has	 experience	 handling	
development	efforts	varying	in	size	and	duration	from	just	several	engineers	working	for	a	few	months	to	large-
scale	 projects	 involving	 dozens	 of	 developers	 and	 spanning	 several	 years.	 StarSoft	 successfully	 uses	 Agile	
development	and	particularly	XP	engineering	practices	to	maintain	CMM	Level	3	certification.	

	

HIDDEN COSTS OF OUTSOURCING
The	hidden	costs	of	outsourcing	are	significant,	beginning	with	startup	costs.	Barthelemy	[65]	surveyed	50	
companies		and	found	that	14%	of	outsourcing	operations	were	failures.	In	the	remainder,	costs	of	transitioning	
to	a	new	vendor	often	canceled	out	anticipated	savings	from	low	labor	costs.	The	average	time	from	evaluating	
outsourcing	to	beginning	of	vendor	performance	was	18	months	for	small	projects.	As	a	result,	the	MIT	Sloan	
Management	Review	advises	readers	not	to	outsource	critical	IT	functions.		

	

The	German	Institute	for	Economic	Research	analyzed	43,000	German	manufacturing	firms	from	1992-2000	
and	found	that	outsourcing	services	led	to	poor	corporate	performance,	while	outsourcing	production	helped	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 99	

	

[66].	While	this	is	a	manufacturing	study	rather	than	software	development,	it	suggests	that	outsourcing	core	
development	may	provide	gains	not	seen	otherwise.	

	

FIGURE	12	-	SIRSIDYNIX	LINES	OF	NEW	JAVA	CODE	IN	THOUSANDS	FROM	2003-2006.		

	

Large	software	projects	are	very	high	risk.	The	2003	Standish	Chaos	Report	show	success	rates	of	only	34%.	
51%	of	projects	are	over	budget	or	lacking	critical	functionality.	15%	are	total	failures	[67].	

	

SirsiDynix	sidestepped	many	of	the	hidden	costs,	directly	outsourced	primary	production,	and	used	Integrated	
Scrums	to	control	risk.	The	goals	of	increasing	output	per	team	member	and	linearly	increasing	overall	output	
by	 increasing	 team	size	were	achieved.	Production	velocity	more	 than	doubled	when	 the	30	person	North	
American	development	team	was	augmented	with	26	Russians	from	StarSoft	in	December	2005.	

	

INTENT	OF	THE	INTEGRATED	SCRUMS	MODEL	
An	Agile	 company	building	a	 large	product	and	 facing	 time-to-market	pressure	needs	 to	quickly	double	or	
quadruple	productivity	within	a	constrained	budget.	The	local	talent	pool	is	not	sufficient	to	expand	team	size	
and	salary	costs	are	much	higher	than	outsourced	teams.	On	the	other	hand,	outsourcing	is	only	a	solution	if	
Agile	practices	are	enhanced	by	capabilities	of	the	outsourced	teams.	The	primary	driver	is	enhanced	technical	
capability	resulting	in	dramatically	improved	throughput	of	new	application	functionality.	Cost	savings	are	a	
secondary	driver.	

	

CONTEXT	
	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 100	

	

Software	complexity	and	demands	 for	 increased	 functionality	are	exponentially	 increasing	 in	all	 industries.	
When	an	author	of	this	paper	flew	F-4	aircraft	 in	combat	in	1967,	8%	of	pilot	functions	were	supported	by	
software.	 In	 1982,	 the	 F16	 software	 support	 was	 45%,	 and	 by	 2000,	 the	 F22	 augmented	 80%	 of	 pilot	
capabilities	with	software	[63].	Demands	for	ease	of	use,	scalability,	reliability,	and	maintainability	increase	
with	complexity.	

	

SirsiDynix	was	confronted	with	the	requirement	to	completely	re-implement	a	legacy	library	system	with	over	
12,500	installed	sites.	Large	teams	working	over	many	years	in	a	changing	business	environment	faced	many	
new	requirements	in	the	middle	of	the	project.	To	complicate	matters	further,	the	library	software	industry	
was	 in	 a	 consolidating	 phase.	 Dynix	 started	 the	 project	 in	 2002	 and	 merged	 with	 Sirsi	 in	 2005	 to	 form	
SirsiDynix.	

	

Fortunately,	Dynix	started	with	a	scalable	Agile	process	that	could	adapt	to	changing	requirements	throughout	
the	project.	Time	to	market	demanded	more	than	doubling	of	output.	That	could	only	happen	by	augmenting	
resources	with	Agile	teams.	StarSoft	was	selected	because	of	their	history	of	successful	XP	implementations	
and	their	experience	with	systems	level	software.	

	

The	 combination	of	 high	 risk,	 large	 scale,	 changing	market	 requirements,	merger	 and	 acquisition	business	
factors,	and	the	SirsiDynix	experience	with	Scrum	combined	with	StarSoft	success	with	XP	led	them	to	choose	
an	Integrated	Scrums	implementation.	 Jack	Blount's	past	experience	with	Agile	development	projects	at	US	
Data	Authority,	TeleComputing	and	JD	Edwards	where	he	had	used	Isolated	Scrums	and	Distributed	Scrum	of	
Scrums	models	did	not	meet	his	expectations.	This	was	a	key	factor	in	his	decision	to	structure	the	project	as	
Integrated	Scrums.		

	

FORCES		

COMPLEXITY	DRIVERS	
The	 Systems	 and	 Software	 Consortium	 (SSCI)	 has	 outlined	 drivers,	 constraints,	 and	 enablers	 that	 force	
organizations	to	invest	in	real-time	project	management	information	systems.	Scalable	Scrum	implementations	
with	minimal	tooling	are	one	of	the	best	real-time	information	generators	in	the	software	industry.	

	

SSCI	complexity	drivers	are	described	as	[63]:	

	

• Increasing	problem	complexity	shifting	focus	from	requirements	to	objective	capabilities	that	must	be	
met	by	larger	teams	and	strategic	partnerships.	

• Increasing	 solution	 complexity	 which	 shifts	 attention	 from	 platform	 architectures	 to	 enterprise	
architectures	and	fully	integrated	systems.	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 101	

	

• Increasing	technical	complexity	from	integrating	stand	alone	systems	to	integrating	across	layers	and	
stacks	of	communications	and	network	architectures.	

• Increasing	compliance	complexity	shifting	from	proprietary	to	open	standards.	

• Increasing	team	complexity	shifting	from	a	single	implementer	to	strategic	teaming	and	mergers	and	
acquisitions.	

	

SirsiDynix	faced	all	of	these	issues.	Legacy	products	were	difficult	to	sell	to	new	customers.	They	needed	a	new	
product	with	complete	 functionality	 for	 the	 library	enterprise	based	on	new	 technologies	 that	were	highly	
scalable,	easily	expandable,	and	used	the	latest	computer	and	library	standards,		

	

The	 SirsiDynix	 Horizon	 8.0	 architecture	 supports	 a	 wide	 variety	 of	 users	 from	 publication	 acquisition	 to	
cataloging,	searching,	reserving,	circulating,	or	integrating	information	from	local	and	external	resources.	The	
decision	was	made	 to	use	 Java	with	 J2EE,	a	modular	design,	database	 independency,	maximum	use	of	 free	
platforms	and	tools,	and	wide	support	of	MARC21,	UNIMARC,	Z39.50	and	other	ILS	standards.	

	

The	project	uses	a	three-tier	architecture	and	Hibernate	as	a	database	abstraction	layer.	Oracle	10g,	MS	SQL,	
and	IBM	DB2	support	is	provided.	The	JBoss	4	Application	server	is	used	with	a	Java	GUI	Client	with	WebStart	
bootstrap.	 It	 is	 a	 cross-platform	product	 supporting	MS	Windows	2000,	XP,	 2003,	Red	Hat	Linux,	 and	Sun	
Solaris.	 Built-in,	multi-language	 support	 has	 on-the-fly	 resource	 editing	 for	 ease	 of	 localization.	 Other	 key	
technologies	are	JAAS,	LDAP,	SSL,	Velocity,	Xdoclet,	JAXB,	JUnit,	and	Jython.	

	

TOP	ISSUES	IN	DISTRIBUTED	DEVELOPMENT	
The	SSCI	has	carefully	researched	top	issues	in	distributed	development	[63],	all	of	which	had	to	be	handled	by	
SirsiDynix	and	StarSoft.	

	

• Strategic:	Difficult	 leveraging	available	resources,	best	practices	are	often	deemed	proprietary,	are	
time	consuming	and	difficult	to	maintain.	

• Project	and	process	management:	Difficulty	synchronizing	work	between	distributed	sites.		

• Communication:	Lack	of	effective	communication	mechanisms.	

• Cultural:	Conflicting	behaviors,	processes,	and	technologies.	

• Technical:	Incompatible	data	formats,	schemas,	and	standards.	

• Security:	Ensuring	electronic	transmission	confidentiality	and	privacy.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 102	

	

The	unique	way	in	which	SirsiDynix	and	StarSoft	implemented	an	Integrated	Scrums	model	carefully	addressed	
all	of	these	issues.	

	

SOLUTION:	INTEGRATED	SCRUMS	
There	are	three	roles	in	a	Scrum:	the	Product	Owner,	the	Scrum	Master,	and	the	Team.	SirsiDynix	used	these	
roles	to	solve	the	strategic	distribution	problem	of	building	a	high	velocity,	real-time	reporting	organization	
with	an	open	source	process	that	is	easy	to	implement	and	low-overhead	to	maintain.		

	

For	large	programs,	a	Chief	Scrum	Master	to	run	a	Scrum	of	Scrums	and	a	Chief	Product	Owner	to	centrally	
manage	 a	 single	 consolidated	 and	prioritized	product	 backlog	 is	 essential.	 SirsiDynix	 located	 the	 Scrum	of	
Scrums	and	the	Product	Owner	teams	in	Utah.	

TEAM	FORMATION	
The	 second	 major	 challenge	 for	 large	 projects	 is	 process	 management,	 particularly	 synchronizing	 work	
between	sites.	This	was	achieved	by	splitting	teams	across	sites	and	fine	tuning	daily	Scrum	meetings.	

	

	

FIGURE	 3	 SCRUM	 TEAMS	 SPLIT	 ACROSS	 SITES.	 PO=PRODUCT	 OWNER,	 SM=SCRUM	
MASTER,	TLD=TECHNICAL	LEAD.	

Teams	at	SirsiDynix	were	split	across	the	functional	areas	needed	for	an	integrated	library	system.	Half	of	a	
Scrum	team	is	typically	in	Provo,	Utah,	and	the	other	half	in	St.	Petersburg.	There	are	usually	3-5	people	on	the	
Utah	part	of	the	team	and	4	or	more	on	the	St.	Petersburg	portion	of	the	team.	The	Search	and	Reporting	Teams	
are	smaller.	There	are	smaller	numbers	of	team	members	in	Seattle,	Denver,	St.	Louis,	and	Waterloo,	Canada.	

SCRUM MEETINGS
Teams	meet	 across	 geographies	 at	 7:45am	 Utah	 time	which	 is	 17:45	 St.	 Petersburg	 time.	 Teams	 found	 it	
necessary	 to	 distribute	 answers	 to	 the	 three	 Scrum	 questions	 in	 writing	 before	 the	 Scrum	meeting.	 This	
shortens	the	time	needed	for	the	join	meeting	teleconference	and	helps	overcome	any	language	barriers.	Each	
individual	reports	on	what	they	did	since	the	last	meeting,	what	they	intend	to	do	next,	and	what	impediments	
are	blocking	their	progress.		

SM	

Dev	

Dev	

Dev	

	

T	Ld	Catalogue Serials Circulation Search Reporting

StarSoft

SirsiDynix

PO	 PO	 PO	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 103	

	

	

Email	exchange	on	the	three	questions	before	the	daily	Scrum	teleconference	was	used	throughout	the	project	
to	enable	phone	meetings	to	proceed	more	smoothly	and	efficiently.	These	daily	team	calls	helped	the	people	
in	Russia	and	the	U.S.	learn	to	understand	each	other.	In	contrast,	most	outsourced	development	projects	do	
not	hold	formal	daily	calls	and	the	communication	bridge	is	never	formed.	

	

	

Figure 4 – Scrum Team meetings

	

Local	sub-teams	have	an	additional	standup	meeting	at	the	beginning	of	the	day	in	St.	Petersburg.	Everyone	
uses	the	same	process	and	technologies	and	daily	meetings	coordinate	activities	within	the	teams.	

	

Scrum	Masters	 are	 all	 in	 Provo,	Utah	 or	Waterloo,	 Canada,	 and	meet	 in	 a	 Scrum	of	 Scrums	 every	Monday	
morning.	Here	work	is	coordinated	across	teams.	Architects	are	directly	allocated	to	production	Scrum	teams	
and	all	located	in	Utah.	An	Architecture	group	also	meets	on	Monday	after	the	Scrum	of	Scrums	meeting	and	
controls	the	direction	of	the	project	architecture	through	the	Scrum	meetings.	A	Product	Owner	resident	in	
Utah	is	assigned	to	each	Scrum	team.	A	chief	Product	Owner	meets	regularly	with	all	Product	Owners	to	assure	
coordination	of	requirements.	

SirsiDynix	achieved	strong	central	control	of	teams	across	geographies	by	centrally	locating	Scrum	Masters,	
Product	Owners,	and	Architects.	This	helped	them	get	consistent	performance	across	distributed	teams.	

	

SPRINTS
Sprints	are	two	weeks	long	on	the	SirsiDynix	project.	There	is	a	Sprint	planning	meeting	similar	to	an	XP	release	
planning	meeting	 in	which	requirements	 from	User	Stories	are	broken	down	into	development	 tasks.	Most	
tasks	require	a	lot	of	questions	from	the	Product	Owners	and	some	tasks	take	more	time	than	initial	estimates.		

	

7:45am Provo, Utah

St. Petersburg, Russia 17:45pm

	Local Team
Meeting

Scrum Team Meeting

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 104	

	

The	lag	time	for	Utah	Product	Owner	response	to	questions	on	User	Stories	forces	multitasking	in	St.	Petersburg	
and	this	is	not	an	ideal	situation.	Sometimes	new	tasks	are	discovered	after	querying	Product	Owners	during	
the	Sprint	about	feature	details.	

	

Code	is	feature	complete	and	demoed	at	the	end	of	each	Sprint.	Up	until	2006,	if	it	met	the	Product	Owner’s	
functional	requirement,	it	was	considered	done,	although	full	testing	was	not	completed.	It	was	not	deliverable	
code	until	 SirsiDynix	 strengthened	 its	 definition	of	 “done”	 to	 include	 all	 testing	 in	2006.	Allowing	work	 in	
progress	to	cross	Sprint	boundaries	introduces	wait	times	and	greater	risk	into	the	project.	It	violates	the	lean	
principle	of	reducing	work	in	progress	and	increases	rework.	

	

PRODUCT SPECIFICATIONS
Requirements	are	in	the	form	of	User	Stories	used	in	many	Scrum	and	XP	implementations.	Some	of	them	are	
lengthy	and	detailed,	others	are	not.	A	lot	of	questions	result	after	receiving	the	document	in	St.	Petersburg	
which	are	resolved	by	in	daily	Scrum	meetings,	instant	messaging,	or	email.	

	

STORY FOR SIMPLE RENEWALS USE CASE:
Patron	brings	book	or	other	item	to	staff	to	be	renewed.	

	

Patron	John	Smith	checked	out	"The	Da	Vinci	Code"	the	last	time	he	was	in	the	library.	Today	he	is	back	in	the	
library	to	pick	up	something	else	and	brings	"The	Da	Vinci	Code"	with	him.	He	hands	it	to	the	staff	user	and	
asks	for	it	to	be	renewed.	The	staff	user	simply	scans	the	item	barcode	at	checkout,	and	the	system	treats	it	as	
a	renewal	since	the	item	is	already	checked	out	to	John.	This	changes	the	loan	period	(extends	the	due	date)	for	
the	length	of	the	renewal	loan.	Item	and	patron	circulation	history	are	updated	with	a	new	row	showing	the	
renewal	date	and	new	due	date.	Counts	display	for	the	number	of	renewals	used	and	remaining.	The	item	is	
returned	to	Patron	John	Smith.	

	

Assumptions:	

Item	being	renewed	is	currently	checked	out	to	the	active	patron	

• No	requests	or	reservations	outstanding	

• Item	was	not	overdue	

• Item	does	not	have	a	problem	status	(lost,	etc)	

• No	renew	maximums	have	been	reached	

• No	block/circulation	maximums	have	been	reached	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 105	

	

• Patron's	subscriptions	are	active	and	not	within	renewal	period	

• No	renewal	charges	apply	

• No	recalls	apply	

Renewal	is	from	Check	Out	(not	Check	In)	

Staff	User	has	renewal	privileges	

	

Verification	(How	to	verify	completion):	

• Launch	Check	Out	

• Retrieve	a	patron	who	has	an	item	already	checked	out	but	not	yet	overdue	

• Enter	barcode	for	checked	out	item	into	barcode	entry	area	(as	if	it	is	being	checked	out),	and	press	
<cr>.	

• System	calculates	new	due	date	according	to	circulation	rules	and	agency	parameters.		

• The	renewal	count	is	incremented	(Staff	renewal	with	item)	

• If	 user	 views	 "Circulation	 Item	Details",	 the	 appropriate	 Renewals	 information	 should	 be	 updated	
(renewals	used/remaining)	

• Cursor	 focus	 returns	 to	barcode	entry	area,	 ready	 to	 receive	next	 scan	 (if	previous	barcode	 is	 still	
displayed,	it	should	be	automatically	replaced	by	whatever	is	entered	next)	

• A	check	of	the	item	and	patron	circulation	statistics	screens	show	a	new	row	for	the	renewal	with	the	
renewal	date/time	and	the	new	due	date.	

	

For	this	project,	St.	Petersburg	staff	likes	a	detailed	description	because	the	system	is	a	comprehensive	and	
complex	system	designed	for	specialized	librarians.	As	a	result,	there	is	a	lot	of	knowledge	that	needs	to	be	
embedded	in	the	product	specification.	

	

The	ways	libraries	work	in	St.	Petersburg	are	very	different	than	English	libraries.	Russian	libraries	operate	
largely	via	manual	operations.	While	processes	look	similar	to	English	libraries	on	the	surface,	the	underlying	
details	are	quite	different.	Therefore,	user	stories	do	not	have	sufficient	detail	for	Russian	programmers.	

TESTING
Developers	write	unit	tests.	The	Test	team	and	Product	Owners	do	manual	testing.	An	Automation	Test	team	
in	Utah	creates	scripts	for	an	automated	testing	tool.	Stress	testing	is	as	needed.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 106	

	

During	 the	 Sprint,	 the	 Product	 Owner	 tests	 features	 that	 are	 in	 the	 Sprint	 backlog.	 Up	 until	 2006,	 testers	
received	a	stable	Sprint	build	only	after	the	Sprint	demo.	The	reason	for	this	was	a	lower	tester/developer	ratio	
than	recommended.	

	

There	are	30	team	members	in	North	America	and	26	team	members	in	St.	Petersburg	on	this	project.	The	St.	
Petersburg	team	has	one	project	leader,	3	technical	team	leaders,	18	developers,	1	test	lead,	and	3	testers.	This	
low	tester/developer	ratio	initially	made	it	impossible	to	have	a	fully	tested	package	of	code	at	the	end	of	the	
Sprints.	

	

The	test-first	approach	was	initially	encouraged	and	not	mandated.	Tests	were	written	simultaneously	with	
code	most	of	the	time.	GUIs	were	not	unit	tested.		

	

Component	
Test	
Cases	 Tested	

Acquisitions	 529	 384	

Binding	 802	 646	

Cataloging	 3101	 1115	

Circulation	 3570	 1089	

Common	 0	 0	

ERM	 0	 0	

Pac	Searching	 1056	 167	

Serials	 2735	 1714	

Sub	Total	 11793	 5115	

	

Figure	5	–	Test	Cases	Created	vs.	Tested	(coded	and	working)	

	

In	the	summer	of	2006,	a	new	CTO	of	SirsiDynix,	Talin	Bingham,	took	over	the	project	and	introduced	Test	
Driven	Design.	Every	Sprint	starts	with	the	usual	Sprint	Planning	meeting	and	teams	are	responsible	for	writing	
functional	tests	before	doing	any	coding.	Once	functional	tests	are	written	and	reviewed,	coding	starts.	Test-
first	 coding	 is	 mandated.	 When	 coding	 is	 complete,	 developers	 run	 unit	 tests	 and	 manually	 pass	 all	 the	
functional	tests	before	checking	in	changes	to	the	repository.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 107	

	

Functional	Area	 Reserve	Book	Room	

Task	Description	 Check	that	items	from	Item	List	is	placed	under	Reserve	
with	“Inactive”	status	

Condition	 1. User	has	right	for	placing	Items	under	Reserve	

2. At	least	one	Item	List	exists	in	the	system	

3. Default	Reserve		Item	Status	in	Session	Defaults	is	set	
to	”Inactive”	

Entry	Point	 Launcher	is	opened	

Test	Data	 No	specific	data	

ACTION	
1. Reserve	>	Reserve	Item	

2. Select	“Item	Search”	icon	

3. Select	“Item	List”	in	the	Combo	box	list	of	search	
options	and	enter	appropriate	Item	list	name	

4. Press	Enter	

5. Select	all	Items	which	appear	in	the	Item	Search	
combo	box	and	press	“OK”	

	

EXPECTED	RESULTS	
1. Items	that	were	in	Item	list	should	appear	in	the	

list	in	Reserve	Item	

2. Status	 of	 all	 items	 that	 has	 been	 just	 added	
should	be	shown	as	“Inactive”	

3. Save	button	should	be	inactive	

4. All	 corresponding	 Item	 should	 retain	 their	
original	parameters	

Figure	6	–	Functional	Test	Example	

Automation	testing	is	done	using	the	Compuware	TestPartner	tool,	but	there	is	still	room	for	improvement	of	
test	coverage.	

CONFIGURATION MANAGEMENT
SirsiDynix	was	using	CVS	as	source	code	repository	when	the	decision	was	made	to	engage	an	outsourcing	firm.	
At	that	time,	SirsiDynix	made	a	decision	that	CVS	could	not	be	used	effectively	because	of	lack	of	support	for	
distributed	development,	 largely	 seen	 in	 long	 code	 synchronization	 times.	Other	 tools	were	 evaluated	 and	
Perforce	was	chosen	as	the	best	solution.		

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 108	

	

StarSoft	had	seen	positive	results	on	many	projects	using	Perforce.	 It	 is	 fast,	 reliable	and	offers	 local	proxy	
servers	for	distributed	teams.	Although	not	a	cheap	solution,	it	has	been	very	effective	for	the	SirsiDynix	project.	

	

Automated	builds	run	every	hour	with	email	generated	back	to	developers.	It	takes	12	minutes	to	do	a	build,	
30	minutes	if	the	database	changes.	StarSoft	would	like	to	see	faster	builds	and	true	concurrent	engineering.	
Right	now	builds	are	only	stable	every	two	weeks	at	Sprint	boundaries.		

PAIR PROGRAMMING, REFACTORING, AND OTHER XP PRACTICES
StarSoft	is	an	XP	company	and	tries	to	introduce	XP	practices	into	all	their	projects.	Pair	programming	is	done	
on	more	complicated	pieces	of	functionality.	Refactoring	was	planned	for	future	Sprints	and	not	done	in	every	
iteration	as	in	XP.	Some	radical	refactoring	without	loss	of	functionality	occurred	as	the	project	approached	
completion.	Continuous	integration	is	implemented	as	hourly	builds.	On	this	project,	these	three	engineering	
practices	were	used	with	Scrum	as	the	primary	project	management	methodology.	

	

MEASURING PROGRESS
	

The	project	uses	the	Jira	<http://www.atlassian.com>	issue	tracking	and	project	management	software.	This	
gives	 everyone	 on	 the	 project	 a	 real-time	 view	 into	 the	 state	 of	 Sprints.	 It	 also	 provides	 comprehensive	
management	 reporting	 tools.	 The	 Figure	 below	 shows	 the	 Sprint	 burn-down	 chart,	 a	 snapshot	 of	 Earned	
Business,	and	a	synopsis	of	bug	status.	

	

FIGURE	6	–	SIRSIDYNIX	HORIZON	8.0	PROJECT	DASHBOARD	

Data	from	Jira	can	be	downloaded	into	Excel	to	create	any	requested	data	analysis.	High	velocity	projects	need	
an	automated	tool	to	track	status	across	teams	and	geographies.	The	best	tools	support	bug	tracking	and	status	
of	development	tasks	in	one	system	and	avoid	extra	work	on	data	entry	by	developers.	Such	tools	should	track	
tasks	completed	by	developers	and	work	remaining.	They	provide	more	detailed	and	useful	data	than	time	
sheets,	which	should	be	avoided.	Time	sheets	are	extra	overhead	that	do	not	provide	useful	information	on	the	
state	of	the	project,	and	are	de-motivating	to	developers.		

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 109	

	

Other	companies	like	PatientKeeper	[68]	have	found	tools	that	incorporate	both	development	tasks	and	defects	
that	can	be	packaged	into	a	Sprint	Backlog	are	highly	useful	for	complex	development	projects.	Thousands	of	
tasks	and	dozens	of	Sprints	can	be	easily	maintained	and	reviewed	real-time	with	the	right	tool.	

	

RESULTING	CONTEXT	WITH	INTEGRATED	SCRUMS	
Collaboration	of	SirsiDynix	and	StarSoft	turned	the	Horizon	8.0	project	into	one	of	the	most	productive	Scrum	
projects	ever	documented.	For	example,	data	is	provide	in	the	table	below	on	a	project	that	was	done	initially	
with	a	waterfall	team	and	then	re-implemented	with	a	Scrum	team	[69].	The	waterfall	team	took	9	months	with	
60	people	and	generated	54000	 lines	of	 code.	 It	was	re-implemented	by	a	Scrum	team	of	4.5	people	 in	12	
months.	The	resulting	50,803	lines	of	code	had	more	functionality	and	higher	quality.	

	

		 Scrum	 Waterfall	 SirsiDynix	

Person	Months	 54	 540	 827	

Java	LOC	 50,803	 54000	 671,688	

Function	Points	 959	 900	 12673	

FP	per	dev/month	 17.8	 2.0	 15.3	

FIGURE	 7	 –	 FUNCTION	 POINTS/DEVELOPER	 MONTH	 FOR	 COLLOCATED	 VS.	
DISTRIBUTED	PROJECTS.	

Capers	Jones	of	Software	Productivity	Research	has	published	extensive	tables	on	average	number	of	function	
points	per	lines	of	code	for	all	major	languages	[70].	Since	the	average	lines	of	code	per	function	point	for	Java	
is	53,	we	can	estimate	the	number	of	function	points	in	the	Scrum	application.	The	waterfall	implementation	is	
known	to	have	fewer	function	points.	

Distributed	teams	working	on	Horizon	8.0	generated	671,688	 lines	of	code	 in	14.5	months	with	56	people.	
During	this	period	they	radically	refactored	the	code	on	two	occasions	and	reduced	the	code	based	by	275,000.	
They	have	not	been	penalized	for	refactoring	as	that	is	rarely	done	in	large	waterfall	projects	in	the	database	
from	which	 Capers	 derived	 his	 numbers.	 They	 have	 also	 not	 been	 rewarded	 for	 refactoring	 even	 though	
reducing	lines	of	code	is	viewed	as	important	as	adding	new	code	on	well-run	Agile	projects.	

	

Jones	has	also	shown	from	his	database	of	tens	of	thousands	of	projects	that	industry	average	productivity	is	
12.5	function	points	per	developer/month	for	a	project	of	900	function	points	and	that	this	drops	to	3	for	a	
project	with	13000	function	points	[7].	Some	of	this	is	due	to	4GL	and	other	code-automation	tools	used	on	
small	projects,	many	of	which	are	not	implemented	in	third	generation	languages	like	Java.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 110	

	

The	SirsiDynix	project	is	almost	as	productive	as	the	small	Scrum	project	with	a	collocated	team	of	4.5	people.	
For	a	globally	dispersed	team,	it	is	one	of	the	most	productive	projects	ever	documented	at	a	run	rate	of	five	
times	industry	average.	

	

CONCLUSIONS	
This	case	study	is	a	proof	point	for	the	argument	that	distributed	teams	and	even	outsourced	teams	can	be	as	
productive	 as	 a	 small	 collocated	 team.	 This	 requires	 excellent	 implementation	 of	 Scrum	 along	 with	 good	
engineering	practices.	The	entire	set	of	teams	must	function	as	a	single	team	with	one	global	build	repository,	
one	tracking	and	reporting	tool,	and	daily	meetings	across	geographies.		

	

Outsourced	 teams	must	be	highly	skilled	Agile	 teams	and	project	 implementation	must	enforce	geographic	
transparency	with	cross-functional	teams	at	remote	sites	fully	integrated	with	cross-functional	teams	at	the	
primary	site.	In	the	SirsiDynix	case,	the	teams	were	all	run	from	a	central	site	giving	strong	central	control.	

	

It	is	highly	unlikely	that	distributed	outsourced	teams	using	current	Agile	Alliance	best	practices	of	distributing	
work	to	independent	Scrum	teams	across	geographies	could	achieve	the	level	of	performance	achieved	in	this	
case	study.	Therefore,	SirsiDynix	sets	a	new	standard	of	best	practices	for	distributed	and	outsourced	teams	
with	a	previously	demonstrated	high	level	of	Agile	competence.	

	

ãJeff	Sutherland	1993-2021																																						 	 	 	 	 	 111	

	

FULLY	DISTRIBUTED	SCRUM:	REPLICATING	LOCAL	PRODUCTIVITY	AND	QUALITY	WITH	
OFFSHORE	TEAMS	
	

Jeff	Sutherland,	Ph.D																		Guido	Schoonheim																										Maurits	Rijk	

Scrum,	Inc.																																			Xebia	b.v.																																						Xebia	b.v																																							Boston,	MA,	US																
Hilversum,	Netherlands										Hilversum,	Netherlands	

								jeff.sutherland@scruminc.com								gschoonheim@xebia.com													mrijk@xebia.com	

	

Abstract	

	

Scrum	was	designed	 for	hyperproductive	 teams	where	productivity	 increases	by	5-10	 times	 over	 industry	
averages	and	many	colocated	teams	have	achieved	this	effect.	The	question	for	this	paper	is	whether	distributed,	
offshored	 teams	can	consistently	achieve	 the	 same	 level	of	performance.	 In	particular,	 can	a	 team	establish	a	
localized	velocity	and	quality	and	then	maintain	or	increase	that	velocity	and	quality	when	distributing	teams	
across	continents.	Since	2006,	Xebia	(Netherlands)	started	localized	projects	with	half	Dutch	and	half	Indian	team	
members.	After	establishing	localized	hyperproductivity,	they	move	the	Indian	members	of	the	team	to	India	and	
show	 the	 same	 velocity	 with	 fully	 distributed	 teams.	 After	 running	 XP	 engineering	 practices	 inside	 many	
distributed	 Scrum	 projects,	 Xebia	 has	 systematically	 productized	 a	 model	 for	 high	 performance,	 distributed,	
offshore	teams	with	one	of	the	lowest	defect	rates	in	the	industry.	

	

INTRODUCTION	
The	advantages	of	colocated	teams,	doubling	developer	productivity	compared	to	non-colocated	teams,	

are	commonly	eliminated	by	distributed	software	development	and	offshoring	 [1].	This	paper	 introduces	a	
model	for	producing	distributed	and	offshored	team	velocity	that	is	equal	to	colocated	velocity	of	a	single	team.		
The	model	is	repeatable,	proven	across	many	projects,	and	is	recommended	for	teams	that	can	execute	a	high	
performance	Scrum	implementation	[2]	with	XP	engineering	practices	inside	[3].	

Agile project management with Scrum derives from best business practices in companies like Fuji-Xerox, Honda,
Canon, and Toyota [4]. Combining Scrum with XP engineering practices has generated hyperproductive teams with
5-10 times industry average performance since 1993 [5]	[6]. In 2005, two Agile companies, SirsiDynix (U.S.) and
Exigen Services (Russia), used	distributed	Scrum	 teams	 to	deliver	 linearly	 scalable	performance	 for	a	 large	
project	of	over	1M	lines	of	code	[7].	 	A	distributed	team	of	over	50	people	 in	 the	U.S.	and	Russia	delivered	
velocity	per	developer	equivalent	to	a	6	person	hyperproductive,	colocated	Scrum	team.	This	50	person	team	
produced	the	same	number	of	features	as	a	typical	350	person	waterfall	team	[8].	

During 2006-2008, Xebia implemented a distributed software development team model on multiple projects of
variable types with teams half in the Netherlands and half in India. These distributed teams used the Scrum process
with XP engineering practices inside. When replicated over multiple projects, the Xebia implementation shows
distributed velocity equal to local velocity and has created a new recommended standard for deploying distributed
teams across geographies.

ãJeff	Sutherland	1993-2010																																						 112	

Here we describe offshoring strategies for overcoming the typical geographic, language, and cultural barriers that
impede distributed development. Traditional outsourcing failures can be avoided with the approach described here.
Distribution of individual Scrum teams across geographies eliminates communication failures, XP practices solve
integration problems, and daily team meetings maintain high focus on customer priorities. Earlier work in other
companies showed that colocation doubled Agile team productivity [1]. The fully distributed model supports
geographically transparent software development projects where performance consistently meets or exceeds
productivity of colocated Agile teams.

	

BENEFITS	AND	CHALLENGES	IN	OUTSOURCING	OFFSHORE	
U.S.,	European,	or	Japanese	companies	often	outsource	software	development	to	Eastern	Europe,	Russia,	

or	the	Far	East.	The	three	key	advantages	that	offshoring	strives	to	achieve	are	(1)	lower	costs	of	labor,	(2)	
capture	talent	not	available	locally,	and	(3)	increase	and	decrease	project	size	without	layoffs.	Each	of	these	
advantages	comes	with	its	own	challenges	that	have	to	be	solved	to	make	outsourcing	successful.		

LOWER	COST	OF	LABOR	

Typically,	 remote	 teams	operate	 independently	and	communication	problems	 lower	productivity.	Most	
offshoring	 organizations	 require	 detailed	 specifications	 before	 they	 begin	 a	 project	 and	 theses	 traditional	
project	planning	methodologies	show	high	failure	rates.		

The	hidden	costs	of	offshoring	are	significant,	beginning	with	startup	costs.	Barthelemy	[65]	surveyed	50	
companies		and	found	that	14%	of	outsourcing	to	offshore	operations	were	failures.	In	the	remainder,	costs	of	
transitioning	to	a	new	vendor	often	canceled	out	anticipated	savings	from	low	labor	costs.	The	average	time	
from	evaluating	offshoring	to	beginning	of	vendor	performance	was	18	months	for	small	projects.	As	a	result,	
the	MIT	Sloan	Management	Review	advises	readers	not	to	outsource	critical	IT	functions	offshore.		

Secondly,	high	productivity	 is	not	easily	achievable.	 IDX	Systems	 (now	GE	Healthcare)	averaged	240%	
productivity	improvement	with	Scrum	during	1996-2000	based	on	analysis	by	external	function	point	experts.	
Outsourcing	development	to	an	offshored	waterfall	team	typically	saves	20%	over	internal	waterfall	costs.	At	
IDX,	 it	 would	 cost	 twice	 as	 much	 to	 get	 a	 project	 done	 offshore	 compared	 to	 internal	 Scrum	 teams.	 At	
PatientKeeper	(a	MIT	startup	company	in	2000)	during	2004-2007,	the	break	even	point	for	outsourcing	was	
achieved	only	when	Indian	developers	cost	less	than	10%	of	American	developers.	Because	Indian	waterfall	
developers	cost	30%	of	Boston	Scrum	developers,	it	cost	three	times	as	much	to	get	software	developed	by	an	
Indian	waterfall	 team.	The	PatientKeeper	Board	permanently	terminated	outsourcing	after	reviewing	these	
ROI	data.	

CAPTURE	TALENT	

Capturing	external	talent	may	also	be	a	problem.	Jack	Blount,	CEO	of	Dynix	and	former	COO	of	Borland	
[19][19][19][19][18]	decided	not	to	outsource	to	India	and	China	after	he	verified	that	annual	turnover	rates	
were	30-50%	[9].	Rathi	describes	how	employee	 turnover	 is	 largely	determined	by	 two	variables:	person-

ãJeff	Sutherland	1993-2010																																						 113	

culture	and	person-job	fit	[10].	Lack	of	these	fits	results	in	lower	job	satisfaction	and	consequently	in	employee	
turnover.		

SCALE	PROJECT	SIZE	WITHOUT	LAYOFFS	

Scaling	with	remote	capacity	gives	you	a	local	team	that	remains	stable	when	you	scale	down.	However	if	
core	development	is	moved	offshore,	knowledge	gets	lost	when	you	downsize,	causing	severe	problems	and	
sometimes	vendor	lock-in.	

	

DISTRIBUTED	SCRUM	TEAM	MODELS	
Achieving	promised	benefits	of	outsourcing	requires	real	cost	savings,	stable	offshore	teams,	and	a	strategy	

for	retaining	core	knowledge	onshore.	This	can	be	achieved	with	stable	offshore	Agile	teams	that	can	maintain	
the	same	velocity	as	onshore	teams	and	with	onshore	teams	that	maintain	the	same	knowledge	level	as	offshore	
teams.	

Here	we	consider	three	distributed	Scrum	models	commonly	observed	in	practice.		

Isolated	Scrums	-	Teams	are	isolated	across	geographies.		

Distributed	Scrum	of	Scrums	–	Scrum	teams	are	isolated	across	geographies	and	integrated	by	a	Scrum	
of	Scrums	that	meets	regularly	across	geographies.	

Fully	 distributed	 Scrums	 –	 Scrum	 teams	 are	 cross-functional	 with	 members	 distributed	 across	
geographies.	This	means	that	a	single	team	will	have	members	in	multiple	locations.	A	single	team	might	have	
a	Scrum	Master	and	two	developers	in	the	Netherlands	while	a	tester	and	four	developers	reside	in	India.	These	
team	members	share	a	single	sprint	backlog	and	share	code	ownership.	In	the	SirsiDynix	case,	the	Scrum	of	
Scrums	was	localized	with	all	Scrum	Masters	in	Utah.	At	Xebia,	Scrum	Masters	may	be	in	the	Netherlands	or	
India	depending	on	project	needs.	

	 	

ãJeff	Sutherland	1993-2010																																						 114	

Figure 1: Distributed Scrum Team Strategies

Most offshore development efforts use a degenerative form of the Isolated Scrums model where outsourced teams are not cross-
functional and not Agile. Requirements may be created in the U.S. and developed in Dubai, or development may occur in Germany and
quality assurance in India. Typically, cross-cultural communication problems are compounded by differences in work style in the primary
organization vs. the offshored group. In the worst case, teams outsourced this way are not using Scrum and their productivity is typical of
waterfall projects further delayed by cross-continent communications lag time. Implementations of Scrum in a data rich CMMI Level 5
company simultaneously running waterfall, incremental, and iterative projects, showed productivity of Scrum teams was at least double
that of waterfall teams, even with CMMI Level 5 reporting overhead [11]. Outsourced teams not using Scrum will in the best case achieve
less than half the velocity of a onshore site using Scrum assuming equal talent across teams.

The latest thinking in the Project Management Institute Guide to the Project Management Body of Knowledge (PMBOK) models is
a degenerative case of isolated non-Scrum teams . This is a spiral waterfall methodology which layers the Unified Modeling Language
(UML) and the Rational Unified Process (RUP) onto teams which are not cross-functional [12]. It partitions work across teams, creates
teams with silos of expertise, and incorporates a phased approach laden with artifacts that violate the principles of lean development [13].

Best practice recommended is a Distributed Scrum of Scrums model. This model partitions work across cross-functional, isolated
Scrum teams while eliminating most dependencies between teams. Scrum teams are linked by a Scrum-of-Scrums where Scrum Masters
(team leaders/project managers) meet regularly across locations. This encourages communication, cooperation, and cross-fertilization and
may be appropriate for newcomers to Agile development or those who have offshore limitations that cripple the productivity of the fully
distributed model.

ONETEAM	MODEL	
Xebia’s	Fully	Distributed	Scrum	model	has	all	teams	fully	distributed	and	each	team	has	members	at	multiple	
locations.	While	this	“OneTeam”	model	might	seem	to	create	communication	and	coordination	burdens,	most	
communication	is	handled	by	following	the	Scrum	cycle.	The	daily	Scrum	meetings	actually	help	to	break	down	
cultural	barriers	and	disparities	in	work	styles	while	simultaneously	enhancing	customer	focus	and	offshore	
understanding	of	 customer	needs.	On	enterprise	 implementations,	 it	 can	organize	 the	project	 into	 a	 single	
whole	with	an	integrated	global	code	base.	Proper	implementation	of	OneTeam	provides	location	transparency	
and	performance	characteristics	similar	to	hyperproductive	co-located	teams.		

	

Isolated Scrums Teams

Distributed Scrum of Scrums

Fully Distributed Scrums

ãJeff	Sutherland	1993-2010																																						 115	

Maximum	business	value	is	delivered	in	Scrum	by	implementing	the	Product	Backlog	in	order	of	business	value	
of	features.	Xebia	team	product	features	are	represented	in	user	stories	and	size	of	a	story	is	represented	in	
story	points	[5].		

	

Xebia	 teams	consistently	validate	 that	distributed	velocity	equals	 colocated	velocity	by	measuring	 cost	per	
story	point.	The	value	of	the	feature	divided	by	actual	cost	is	the	prime	indicator	of	business	value	and	this	is	
directly	proportional	 to	 the	velocity	of	 the	team	in	story	points	per	 iteration.	The	Fully	Distributed	Scrums	
model	is	recommended	for	experienced	Agile	teams	in	multiple	locations	because	cost	per	story	point	is	the	
same	as	localized	teams	and	the	Xebia	distributed	teams	have	improved	focus	on	executing	stories	that	better	
fit	customer	needs	in	the	right	order	than	localized	teams.	

	

Cost	 per	 story	 point	 cannot	 be	 standardized	 across	 the	 industry.	 The	 best	 standard	 metric	 to	 compare	
productivity	across	projects	is	Function	Points.	Capers	Jones	demonstrated	many	years	ago	that	the	number	of	
features	delivered	in	Function	Points	can	be	estimated	by	“back-firing”	using	lines	of	code	delivered	[8].	While	
this	 is	 an	 indirect	measure	 of	 business	 value	 delivered,	 it	 is	 the	 best	measure	 available	 to	 compare	 teams	
industry	wide.	

	

While	one	might	argue	that	delivering	lots	of	code	may	not	produce	business	value,	this	is	controlled	by	Scrum	
teams	running	XP	engineering	practices	in	two	ways:	

• Scrum	orders	Product	Backlog	by	business	value	and	assures	lines	of	code	delivered	directly	increase	
business	value.	

• The	XP	practice	of	refactoring	eliminates	many	thousands	of	lines	of	code	that	would	remain	static	in	
the	code	base	of	a	waterfall	team.	
	

The	net	result	is	that	comparisons	of	business	value	delivered	by	Scrum/XP	teams	is	conservative	compared	to	
waterfall	teams	when	measured	by	any	indicator	affected	by	lines	of	code.		

	

Thus	the	message	of	this	paper	is	that	Xebia	Scrum/XP	teams	deliver	Function	Points	over	seven	times	faster	
than	industry	average	waterfall	teams	and	the	Function	Points	they	deliver	have	higher	business	value	than	
the	waterfall	teams	by	over	an	order	of	magnitude.	Since	this	value	is	delivered	at	the	same	cost	per	story	point,	
and	 this	 cost	 is	 a	 direct	 indicator	 of	 business	 value,	 either	 locally	 or	 distributed,	 the	 OneTeam	 model	 is	
recommended	for	distributed	development	by	those	Agile	teams	capable	of	executing	it.	

	

XEBIA	PRORAIL	PUB	CASE	STUDY	
The	model	for	Fully	Distributed	Scrums	is	best	illustrated	by	a	real	life	example	of	a	Xebia	OneTeam	project;	
the	ProRail	PUB	project.	

	

ãJeff	Sutherland	1993-2010																																						 116	

ProRail,	the	logistical	and	infrastructural	part	of	the	Dutch	railways,	has	been	developing	a	new	information	
system	for	travelers.	Information	about	train	departure	times	is	stored	centrally	and	updated	with	information	
from	the	rail	network.	When	a	train	is	delayed	or	arrives	early	this	information	is	captured	by	sensors	in	the	
infrastructure	as	well	as	by	manual	actions	to	update	train	information.	

	

The	publishing	of	this	information	to	travelers	on	all	the	railway	stations	throughout	the	Netherlands	is	the	
scope	 of	 Xebia’s	 development	 assignment.	 Development	 included	 the	 aggregation	 and	 distribution	 system	
(combining	real	time	information	about	multiple	trains	into	messages	relevant	for	stations),	the	client	in	the	
displays,	 the	audio	system	and	the	controlling	and	monitoring	 interfaces.	As	 this	 is	a	mission	critical,	high-
availability	enterprise	system	with	large	visibility,	the	non-functional	requirements	are	extensive.	

	

Xebia	 took	over	 this	project	 from	a	 failed	waterfall	 implementation	and	meeting	deadlines	was	now	a	key	
criteria.	The	transparency	and	empirical	project	control	that	Scrum	delivers	were	key	incentives	for	the	client	
to	engage	Xebia.	The	choice	to	make	it	an	offshore	project	was	driven	by	cost	and	scalability.	

	

While	Scrum	is	simple	to	understand,	it	is	not	easy	to	implement	and	distributed	development	adds	another	
layer	of	complexity.	The	PUB	project	encountered	a	number	of	challenges	in	these	areas.	

	

LOWER	COST	OF	LABOR	
The	OneTeam	approach	for	Fully	Distributed	Scrum	teams	delivers	the	same	results	as	a	well	running	colocated	
Scrum	team	in	an	offshoring	situation.	Different	aspects	of	the	PUB	project	can	illustrate	this.	

	

PRODUCTIVITY.		
Velocity	of	a	Scrum	team	 is	determined	by	 the	number	of	 story	points	 that	 the	 team	can	complete	using	a	
standardized	definition	of	“done”	in	a	single	iteration.	As	story	points	are	not	translatable	between	projects	the	
PUB	project	size	has	also	been	measured	in	function	points.	This	measure	has	been	done	for	both	the	old	(failed)	
implementation	and	the	new	implementation	by	Xebia	and	these	figures	correspond.	As	a	measurement	this	
does	not	give	a	completely	accurate	picture,	as	it	does	not	capture	the	amount	of	business	value	delivered	very	
well.	It	is	however	the	best	means	available	to	make	comparisons	over	projects.	Below	is	a	table	taken	from	a	
colocated	6	person	Scrum,	the	SirsiDynix	fully	distributed	Scrum	project,	and	extended	with	PUB	data.	

	

ãJeff	Sutherland	1993-2010																																						 117	

		 Cohn	

Colocated	
Scrum		

Cohn	

Waterfall		

SirsiDynix	
Distributed	
Scrum	

Xebia	
Distributed	
Scrum	

Person	
Months	

54	 540	 827	 125	

Lines	of	Java	 51000	 58000	 671688	 100000+	

Function	
Points	

959	 900	 12673	 1887	

FP	 per	 dev.	
per	month	

17.8	 1.7	 15.3	 15.1	

Table	1:	Productivity	of	Colocated	Scrum	vs.	Waterfall	Team		[5],	SirsiDynix	Distributed	Scrum		[9],	and	
Xebia	OneTeam.	

	

As	we	can	see	the	Scrum	projects	easily	outperform	the	Waterfall	project.	Xebia	Distributed	Scrum	comes	close	
to	the	small	colocated	Scrum	team.	The	performance	of	the	SirsiDynix	and	Xebia	project	is	very	similar.	This	
shows	that	the	high	performance	fully	distributed	Scrum	approach	is	reproducible	and	not	typical	for	only	the	
SirsiDynix	environment.	

To	 investigate	 the	 effect	 of	 distributing	 teams	 on	 the	 productivity	we	 can	 look	 at	 the	 cost	 per	 story	 point	
delivered	throughout	the	project.		

	

Figure	3:	Hours	per	story	point	during	the	project	

	

It	is	important	to	note	the	gradual	increase	in	story	point	cost	during	the	life	of	most	projects	due	to	growing	
complexity	and	growing	codebase.	This	constant	has	been	compensated	for	to	focus	the	above	diagram	on	any	
outliers.	The	transition	from	a	local	team	to	a	distributed	team	took	place	at	iteration	6.	As	can	be	seen	from	
the	 resulting	 graph,	 the	 number	 of	 hours	 needed	 to	 implement	 a	 story	 point	 was	 not	 affected	 by	 this	
distribution.	 Storypoint	 estimates	were	 determined	 at	 the	 beginning	 of	 the	 project	 for	 the	whole	 product	
backlog	and	were	determined	for	new	requirements	as	they	surfaced.	Iteration	18	and	19	show	a	significant	
increase	 in	hours	needed	per	 story	point.	Technical	debt	had	been	built	up	during	 the	previous	 iterations.	
Starting	with	 iteration	 20	 this	 technical	 debt	was	 consistently	 removed,	 resulting	 in	 a	 gradual	 increase	 in	
productivity.	

Hours/Storypoint

0
2
4
6
8
10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

Iteration

Hou
rs

ãJeff	Sutherland	1993-2010																																						 118	

	

HIGH	QUALITY	AND	CONSISTENCY.		
Throughout	the	course	of	the	PUB	project	a	lot	of	attention	has	been	paid	to	quality.	The	Scrum	definition	of	
done	 for	 this	 project	 includes	 unit	 test	 coverage	 of	 	 at	 least	 80%,	 fully	 automated	 functional	 testing,	 full	
regression	testing,	performance	and	load	testing	for	all	implemented	stories	as	well	as	updating	the	necessary	
documentation.		

	

For	every	piece	of	functionality	the	whole	team	discusses	proper	design	and	necessary	refactoring	takes	place.	
In	 addition	 to	 this	 shared	ownership	over	design	 every	 team	employs	 a	 ‘quality	watchdog’.	 This	 is	 a	 team	
member	accountable	for	quality	and	consistency.	Any	problems	that	he	/	she	signals	are	to	be	picked	up	and	
discussed	 by	 the	 team.	 All	 teams	 share	 the	 same	 team	 room	 and	 team	 members	 participate	 in	 design	
discussions	of	other	teams	in	order	to	maintain	architectural	consistency	across	teams.	Pair	programming	and	
rotation	of	people	between	teams	is	used	to	avoid	code	ownership	and	spread	knowledge.	

	

All	issues	that	are	found	outside	the	iteration	are	measured	and	solved	as	shown	in	the	following	graph.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4:	Open	defects	during	the	proect	

Cumulative vs. open defects	

0	
100	
200	
300	
400	
500	
600	
700	
800	
900	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	
Iteration	

ãJeff	Sutherland	1993-2010																																						 119	

	

The	 above	 figure	 shows	 that	 the	numbef	 open	defects	 remains	 constant	 (around	50).	 This	means	 that	 the	
project	is	not	building	up	technical	debt	during	development.	The	number	of	open	bugs	per	KLOC	is	actually	
decreasing	because	the	code	base	is	continuously	growing.	Other	data	also	shows	that	more	than	90	%	of	the	
defects	found	are	solved	in	the	same	iteration	in	which	they	were	introduced.		

	

Based	on	these	numbers	we	can	conclude	that	the	verification	and	validation	process	has	isolated	6	defects	per	
KLOC.	During	acceptance	tests	less	than	1	defect	per	KLOC	was	found.	A	fair	estimate	is	that	50%	of	the	defects	
are	still	 left	in	the	product	after	the	acceptance	test,	leaving	us	with	1	defect	per	KLOC.	This	is	far	less	than	
industry	average,	which	is	around	5	defects	per	KLOC	[14].	Fully	Distributed	OneTeam	Scrums	applying	XP	
practices	produce	extremely	high	quality.	

	

CAPTURE	TALENT	NOT	AVAILABLE	LOCALLY	
As	described	in	2.2	this	benefit	depends	on	the	employee	turnover.	To	cope	with	high	turnover	rates	the	project	
concentrated	on	clear	communication,	and	special	attention	to	the	people-culture	and	people-job	fit.	In	addition	
the	Agile	way	of	working	provides	talented	people	with	responsible	work,	thus	guaranteeing	job	satisfaction.	
This	resulted	in	a	turnover	of	less	than	5%	in	one	year.	

	

CULTURAL	DIFFERENCES.		
Indian	 and	 Dutch	 team	 members	 have	 a	 different	 background	 and	 culture.	 This	 shows	 most	 clearly	 in	
communication.	For	example,	where	Dutch	team	members	can	be	loud	and	direct,	Indian	team	members	can	
be	careful	and	cautious	in	their	expression.	Also	India	is	more	hierarchically	oriented	than	the	Netherlands.	
The	first	and	most	important	thing	to	counter	these	differences	is	good	personal	relationships.	By	traveling	at	
the	beginning	and	throughout	the	project,	by	seeing	each	other	daily	in	video	conference	stand-ups,	and	by	
being	part	of	the	same	team	personal	relationships	formed.	Secondly,	a	team	culture	aimed	at	openness	and	
direct	 communication	was	 actively	 developed	 by	 the	 Scrum	Masters.	 This	 helped	 bring	 out	 issues	 during	
retrospectives	and	 lowered	communication	barriers.	Thirdly,	a	company	culture	of	openness	with	an	equal	
value	system	on	both	sites	supported	the	team	culture	and	made	identifying	with	each	other	easier.	

	

SHARING	CONTEXT	AND	PRIORITIES	
In	an	offshoring	situation	it	is	difficult	to	fully	communicate	all	client	nuances,	context	and	priorities	to	offsite	
team	members.	To	actively	distribute	this	knowledge	Xebia	scheduled	regular	traveling,	always-open	Skype	
connections,	a	project	news	gazette	after	every	iteration	and	informal	updates	by	the	product	owner.		

	

CLEAR	COMMUNICATION	THROUGH	SCRUM	
The	Scrum	meetings	facilitate	practically	all	necessary	communication.	This	is	only	possible	because	the	team	
is	fully	distributed	and	shares	the	same	sprint	goals.	All	Scrum	meetings	were	done	in	a	distributed	way	using	
video	conferencing	via	a	simple	Skype	video	call	with	the	exception	of	the	Demo.	Separate	meeting	rooms	are	
set	up	with	conference	equipment	and	a	Scrum	planning	tool	with	a	digital	burn	down	chart	is	used	to	share	

ãJeff	Sutherland	1993-2010																																						 120	

the	status	of	 the	sprint	across	 locations.	A	microphone	 is	passed	around	as	 ‘talking	stick’	 to	 facilitate	clear	
audibility.	 Xebia	 found	 that	 face	 to	 face	 visuals	 greatly	 increases	 the	 effectiveness	 of	 communication	 and	
enhances	personal	relationships.		

	

The	Sprint	planning	meeting	is	done	with	the	whole	team	using	planning	poker	[15]	so	that	members	on	both	
shores	contribute	to	the	estimation	process.	Planning	a	distributed	sprint	took	4	hours	on	average	using	two	
week	sprints.	

	

The	daily	standup	meetings	are	done	when	the		developers	in	the	Netherlands	come	to	work.	A	distributed	
standup	 lasts	no	 longer	then	15	minutes.	A	Scrum	of	Scrums	meeting	was	held	by	Scrum	Masters	after	 the	
stand-ups	to	synchronize	any	dependant	issues	or	impediments	as	well	as	technological	issues.		

	

The	 Scrum	 demo	 was	 not	 distributed	 in	 this	 case	 to	 provide	 maximum	 focus	 and	 responsiveness	 to	 the	
customer.	The	Dutch	members	briefed	the	Indian	members	after	every	Demo.	The	Scrum	retrospective	goes	in	
the	same	fashion	as	the	Sprint	planning	meeting.	The	distributed	retrospective	is	completed	in	2	hours.	

	

Together	 these	 meetings	 provide	 the	 full	 official	 meeting	 cycle.	 One	 on	 one	 meetings	 are	 being	 held	 as	
necessary,	as	well	as	design	discussions.	This	is	no	different	from	a	colocated	Scrum	with	the	possible	exception	
of	tooling.		

	

SOME	WORK	IS	LOCAL	
While	all	development	work	can	be	distributed	there	is	project	work	that	is	not	easily	done	in	a	distributed	
way.	A	fourth	Scrum	team,	consisting	only	of	local	team	members,	was	dedicated	to	specific	customer	facing	
compliancy	 activities	 and	 removing	 certain	 impediments.	 Examples	 of	 local	 deliverables	 are	writing	Dutch	
documentation,	 aligning	with	 customer	 architectural	 stakeholders,	 discussing	 requirements	with	 technical	
stakeholders	 and	 researching	 technical	 dependencies	 between	 the	 infrastructure	 and	 other	 systems.	 This	
resulted	in	clearing	of	a	lot	of	roadblocks	and	a	high	velocity	for	the	distributed	teams.	

	

TOOLING	FOR	COMMUNICATION	AND	PROCESS	
In	this	project	ScrumWorks	[16]	was	used	to	manage	the	product	backlog	and	sprint	backlog	electronically.	
Burndown	graphs	were	printed	everyday	and	posted	on	the	wall	in	the	team	rooms.		

	

For	global	sharing	of	information	and	documentation	a	wiki	was	used	intensively.	To	discuss	architecture	a	
smartboard	 (computerized	whiteboard)	was	 used,	 along	with	 other	 solutions	 for	 digital	 whiteboarding.	 A	
single	code	repository,	single	continuous	build	system,	test	servers	accessible	from	both	locations	and	a	shared	
mailing	list	are	some	of	the	tools	used	to	facilitate	the	development	process.	

ãJeff	Sutherland	1993-2010																																						 121	

	

PROJECT	STRUCTURE	AND	SCALING	
Xebia	initiated	the	PUB	project	with	a	short	initiation	phase	where	the	product	backlog	was	developed,	basic	
architecture	 constraints	 were	 established	 and	 processes	 such	 as	 QA,	 Acceptance	 and	 Requirements	
management	were	set	up	with	the	customer	to	match	the	client	organization	in	an	Agile	way.	

	

After	three	weeks	of	project	initiation,	a	colocated	development	team	started	the	first	iteration	of	the	project.	
Iteration	length	was	set	at	two	weeks	throughout	the	project.		

	

The	first	two	iterations	were	done	with	Dutch	developers.	Indian	team	members	were	included	onsite	as	soon	
as	immigration	and	logistical	constraints	allowed,	starting	with	the	third	iteration.	Both	Dutch	and	Indian	team	
members	worked	as	a	single	colocated	Scrum	team	with	a	single	sprint	backlog,	following	all	XP	engineering	
practices.		In	the	shared	onsite	iterations	the	team	members	forged	personal	relationships	to	last	throughout	
the	project.	By	being	onsite	with	the	customer,	the	Indian	team	members	acquired	a	good	sense	of	customer	
context.	 It	also	got	everyone	aligned	concerning	practices,	standards,	 tooling,	and	natural	roles	 in	 the	team	
formed.	 After	 three	 iterations	 the	 onsite	 Indian	 team	 members	 returned	 to	 India.	 During	 these	 5	 initial	
iterations	(10	weeks)	the	team	established	colocated	hyperproductivity.	

	

The	project	scaled	up	after	Indian	team	members	returned	home.	Engineers	were	added	and	two	new	full	teams	
were	formed.	Engineers	in	the	Netherlands	were	split	over	both	teams	as	were	engineers	in	India,	creating	two	
teams	 that	both	have	members	 in	multiple	 locations.	Careful	 attention	 is	paid	 to	 spreading	 the	 experience	
among	the	new	teams	and	practices	like	pair	programming	are	used	to	get	new	members	up	to	speed.	This	cell	
division	like	process	is	repeated	until	the	project	is	at	the	desired	scale.	

	

	

Figure 2: Fully Distributed Scrum team division

	

The	project	scaled	up	to	three	fully	distributed	Scrum	teams	and	a	fourth	local	Scrum	team,	with	a	total	of	25	
people.	The	different	teams	shared	the	same	product	backlog	but	used	their	own	sprint	backlogs.	

ãJeff	Sutherland	1993-2010																																						 122	

	

At	the	end	of	the	project	the	teams	were	scaled	down	and	merged.	As	the	client	preferred	to	work	with	Dutch	
engineers	 for	maintenance	 the	 Indian	side	was	scaled	down	 further.	This	was	no	problem	since	 the	use	of	
distributed	teams	also	ensures	distributed	knowledge.	

The	total	size	of	the	Xebia	realization	on	this	project	is	about	20	man-years,	100.000+	lines	of	code	over	a	period	
of	11	months.		

	

CONCLUSIONS	
In	summary,	it	is	possible	to	create	a	distributed/outsourced	Scrum	with	the	same	velocity	and	quality	as	a	
colocated	team	and	this	capability	has	been	reproducible	over	many	projects.	The	OneTeam	strategy	lower	
costs,	captures	offshore	talent	and	allows	 increasing	and	decreasing	team	size	without	knowledge	 loss.	We	
highly	recommend	this	strategy	for	experienced	Agile	teams.		

FUTURE	RESEARCH	
Several	other	Xebia	projects	achieved	the	same	velocity	and	quality	as	the	PUB	project	confirming	the	OneTeam	
capability	of	distributing	localized	velocity	and	quality	across	continents.	However,	during	the	PUB	project	data	
collection	was	 standardized	 and	 refined	 to	 a	 high	 level.	 Future	 projects	will	 use	 the	 same	 data	 collection	
standards	as	the	PUB	project	allowing	a	 larger	prospective	study	of	the	OneTeam	effect	with	comparability	
across	many	projects.	

	

While	Xebia	has	now	repeatedly	demonstrated	the	effectiveness	of	the	fully	distributed	team	model,	it	requires	
Agile	teams	to	fully	implement	the	practices	of	Scrum	and	XP.	Less	than	10%	of	Agile	teams	worldwide	are	
capable	of	doing	this	in	2008.	Additional	studies	of	the	fully	distributed	model	across	multiple	companies	would	
be	useful	and	may	help	some	companies	move	beyond	partial	implementation	of	Agile	practices	in	order	to	
achieve	the	fully	distributed	model	benefits.	

REFERENCES	
[1]	 S.	Teasley,	L.	Covi,	M.	S.	Krishnan,	and	J.	S.	Olson,	"How	Does	Radical	Collocation	Help	a	Team	Succeed?,"	

in	CSCW'00	Philadelphia,	PA:	ACM,	2000,	pp.	339-346.	

[2]	 J.	 Sutherland,	 "Future	 of	 Scrum:	Parallel	 Pipelining	 of	 Sprints	 in	 Complex	Projects,"	 in	AGILE	2005	
Conference	Denver,	CO:	IEEE,	2005.	

[3]	 K.	Beck,	Extreme	Programming	Explained:	Embrace	Change.	Boston:	Addison-Wesley,	1999.	

[4]	 H.	Takeuchi	 and	 I.	Nonaka,	 "The	New	New	Product	Development	Game,"	Harvard	Business	Review,	
1986.	

[5]	 M.	Cohn,	User	Stories	Applied	:	For	Agile	Software	Development:	Addison-Wesley,	2004.	

[6]	 J.	Sutherland	and	K.	Schwaber,	The	Scrum	Papers:	Nuts,	Bolts,	and	Origins	of	an	Agile	Method.	Boston:	
Scrum,	Inc.,	2007.	

[7]	 J.	 Sutherland,	 A.	 Viktorov,	 and	 J.	 Blount,	 "Adaptive	 Engineering	 of	 Large	 Software	 Projects	 with	
Distributed/Outsourced	 Teams,"	 in	 International	 Conference	 on	 Complex	 Systems	 Boston,	MA,	 USA,	

ãJeff	Sutherland	1993-2010																																						 123	

2006.	

[8]	 C.	Jones,	Software	assessments,	benchmarks,	and	best	practices.	Boston,	Mass.:	Addison	Wesley,	2000.	

[9]	 J.	Sutherland,	A.	Viktorov,	J.	Blount,	and	N.	Puntikov,	"Distributed	Scrum:	Agile	Project	Management	
with	 Outsourced	 Development	 Teams,"	 in	 HICSS'40,	 Hawaii	 International	 Conference	 on	 Software	
Systems	Big	Island,	Hawaii:	IEEE,	2007.	

[10]	 N.	Rathi,	 "Human	resource	challenges	 in	 Indian	software	 industry:	An	empirical	study	of	employee	
turnover,"	Mercer,	2004.	

[11]	 J.	 Sutherland,	 C.	 Jacobson,	 and	 K.	 Johnson,	 "Scrum	 and	 CMMI	 Level	 5:	 A	 Magic	 Potion	 for	 Code	
Warriors!,"	in	Agile	2007,	Washington,	D.C.,	2007.	

[12]	 K.	E.	Nidiffer	and	D.	Dolan,	"Evolving	Distributed	Project	Management,"	IEEE	Software,	vol.	22,	pp.	63-
72,	Sep/Oct	2005.	

[13]	 M.	 Poppendieck,	 "A	 History	 of	 Lean:	 From	 Manufacturing	 to	 Software	 Development,"	 in	 JAOO	
Conference,	Aarhus,	Denmark,	2005.	

[14]	 W.	S.	Humphrey,	Introduction	to	the	Personal	Software	Process:	Addison	Wesley,	1996.	

[15]	 M.	Cohn,	Agile	Estimation	and	Planning:	Addison-Wesley,	2005.	

[16]	 Danube,	"ScrumWorks	Pro."	vol.	2008	Seattle:	Danube,	2008.	

	

	

ãJeff	Sutherland	1993-2010																																						 124	

SCRUM	AND	CMMI	LEVEL	5:	THE	MAGIC	POTION	FOR	CODE	WARRIORS	
	

Jeff	Sutherland,	Ph.D.	

Patientkeeper	Inc.	

jeff.sutherland@computer.org	

Carsten	Ruseng	Jakobsen	

Systematic	Software	Engineering	

crj@systematic.dk	

Kent	Johnson	

AgileDigm	Inc.	
kent.johnson@agiledigm.com	

	

ABSTRACT	
Projects	combining	agile	methods	with	CMMI2	are	more	successful	in	producing	higher	quality	software	that	more	
effectively	meets	customer	needs	at	a	faster	pace.	Systematic	Software	Engineering	works	at	CMMI	level	5	and	uses	
Lean	product	development	as	a	driver	for	optimizing	software	processes.	Valuable	experience	has	been	gained	by	
combining	Agile	practices	from	Scrum	with	CMMI.	

	

Early	pilot	projects	at	Systematic	showed	productivity	on	Scrum	teams	almost	twice	that	of	traditional	teams.	
Other	projects	demonstrated	a	story	based	test	driven	approach	to	software	development	reduced	defects	found	
during	final	test	by	40%.	

	

We	assert	that	Scrum	and	CMMI	together	bring	a	more	powerful	combination	of	adaptability	and	predictability	
to	the	marketplace	than	either	one	alone	and	suggest	how	other	companies	can	combine	them.	

INTRODUCTION	
One	of	the	trends	in	the	software	industry	is	software	projects	are	more	comprehensive	and	complex	while	
customers	at	the	same	time	request	faster	delivery	and	more	flexibility.	Successful	software	development	is	
challenged	by	the	supplier’s	ability	to	manage	complexity,	technology	innovation,	and	requirements	change.	
Customers	continually	requests	solutions	faster,	better	and	more	cost-effective.	Agile	and	CMMI	methods	both	
address	these	challenges	but	have	very	different	approach	and	perspective	in	methods	applied.		

	

Management	of	complexity	requires	process	discipline,	and	management	of	increased	speed	of	change	requires	
adaptability.	CMMI	primarily	provides	process	discipline	and	Scrum	enhances	adaptability.	This	leads	to	the	
question,	whether	or	not	it	is	possible	to	integrate	CMMI	and	agile	practices	like	Scrum	to	achieve	the	benefits	
from	both	–	or	even	more?	

	

	

2	®	Capability	Maturity	Model,	CMM	and	CMMI	are	registered	in	the	U.S.	Patent	and	Trademark	Office	

ãJeff	Sutherland	1993-2010																																						 125	

This	paper	provides	an	analysis	of	the	effect	of	 introducing	Agile	practices	like	Scrum	and		story	based	test	
driven	software	development	and	knowledge	gained	on	what	is	required	to	be	CMMI	compliant,	while	running	
an	Agile	company.	

CMMI	
The	Capability	Maturity	Model	(CMM)	has	existed	since	1991,	as	a	model	based	on	best	practices	for	software	
development.	It	describes	an	evolutionary	method	for	improving	an	organization	from	one	that	is	ad	hoc	and	
immature	to	one	that	is	disciplined	and	mature	[71].	The	CMM	is	internationally	recognized	and	was	developed	
by	the	Software	Engineering	Institute	at	Carnegie	Mellon	University,	Pittsburgh,	USA.	

	

In	 2002,	 a	 new	 and	 significantly	 extended	 version	 called	 CMMI	 was	 announced,	 where	 the	 ‘I’	 stands	 for	
‘Integration’	[72].	This	model	integrates	software	engineering,	systems	engineering	disciplines,	and	software	
acquisition	practices	into	one	maturity	model.	CMMI	defines	25	process	areas	to	implement.	For	each	process	
area	required	goals,	expected	practices	and	recommended	sub-practices	are	defined.	In	addition	a	set	of	generic	
practices	must	be	applied	for	all	processes.	

	

The	past	15	years	of	experience	with	CMM	and	CMMI,	demonstrates	that	organizations	appraised	to	higher	
levels	of	CMM	or	CMMI	improve	the	ability	to	deliver	on	schedule,	cost,	and	agreed	quality.	Increasingly,	the	
industry	requires	suppliers	to	be	appraised	to	CMM	or	CMMI	level	3	or	higher	[73].	A	number	of	governmental	
organizations	 worldwide,	 have	 established	 CMMI	maturity	 requirements.	 Recently	 the	 Danish	 Minister	 of	
Science	 proposed	 regulations	 to	 require	 public	 organizations	 to	 request	 documentation	 of	 their	 supplier’s	
maturity	[74].	

SCRUM	
Scrum	 for	 software	development	 teams	began	at	Easel	Corporation	 in	1993	 [22]	 and	emerged	as	 a	 formal	
method	 at	 OOPSLA’95	 [23].	 A	 development	 process	 was	 needed	 to	 support	 enterprise	 teams	 where	
visualization	 of	 design	 immediately	 generated	working	 code.	 Fundamental	 problems	 inherent	 in	 software	
development	influenced	the	introduction	of	Scrum:		

	

• Uncertainty	is	inherent	and	inevitable	in	software	development	processes	and	products	-	Ziv’s	Uncertainty	
Principle	[54]	

• For	a	new	software	system	the	requirements	will	not	be	completely	known	until	after	the	users	have	used	
it	-	Humphrey’s	Requirements	Uncertainty	Principle	[58]		

• It	is	not	possible	to	completely	specify	an	interactive	system	–	Wegner’s	Lemma	[55]	

• Ambiguous	 and	 changing	 requirements,	 combined	 with	 evolving	 tools	 and	 technologies	 make	
implementation	strategies	unpredictable.	

	

ãJeff	Sutherland	1993-2010																																						 126	

“All-at-Once”	models	of	software	development	uniquely	 fit	object-oriented	 implementation	of	software	and	
help	 resolve	 these	 challenges.	 They	 assume	 the	 creation	 of	 software	 involves	 simultaneous	 work	 on	
requirements,	analysis,	design,	coding,	and	testing,	then	delivering	the	entire	system	all	at	once	[32].	

	

Sutherland	and	Schwaber,	co-creators	of	Scrum	joined	forces	with	creators	of	other	Agile	processes	in	2001	to	
write	 the	 Agile	 Manifesto	 [75].	 A	 common	 focus	 on	 working	 software,	 team	 interactions,	 customer	
collaboration,	and	adapting	to	change	were	agreed	upon	as	central	principles	essential	to	optimizing	software	
productivity	and	quality.	

CMMI	AND	AGILE	METHODS	
Soon	after	publication	of	the	Agile	Manifesto	in	2001,	Mark	Paulk	principal	contributor	and	editor	of	Capability	
Maturity	Model	Version	1.0	[71],	observed	that	Agile	practices	are	intended	to	maximize	the	benefits	of	good	
practice	 [76,	 77].	 “The	 SW-CMM	 tells	 what	 to	 do	 in	 general	 terms,	 but	 does	 not	 say	 how	 to	 do	 it;	 agile	
methodologies	provide	a	set	of	best	practices	that	contain	fairly	specific	how-to	information	–	an	implementation	
model	–	for	a	particular	kind	of	environment.”	However,	Paulk	noted	that	aligning	the	implementation	of	agile	
methods	with	the	interests	of	the	customer	and	other	stakeholders	in	a	government	contracting	environment	
for	software	acquisition	might	be	an	impossible	task,	where	high	customer	interaction		is	difficult.	

Surdu	[78]	and	McMahon	[79]	reported	positive	experiences	 in	2006	using	agile	processes	on	government	
contracts	while	noting	the	need	for	process	discipline,	good	system	engineering	practices,	and	development	of	
self-motivated	 teams.	Collaboration	with	 customers	was	achieved	 through	agile	 education	and	negotiation.	
These	studies	provide	practical	confirmation	of	Paulk’s	analysis	of	the	applicability	of	agile	practices	in	a	CMM	
environment.	

	

Paulk	[77]	points	out	that	“When	rationally	implemented	in	an	appropriate	environment,	agile	methodologies	
address	many	CMM	level	2	and	level	3	practices.”	Similarly	Kane	and	Ornburn	present	a	mapping	of	Scrum	and	
XP	to	CMMI	[80]	demonstrating	that	a	majority	of	the	CMMI	process	areas	related	to	Project	Management	can	
be	addressed	with	Scrum	and	the	majority	of	process	areas	related	to	software	engineering	can	be	addressed	
with	XP.	CMMI	expects	that	processes	are	optimized	and	perhaps	replaced	over	time	and	states:	“Optimizing	
processes	that	are	agile	and	innovative	depends	on	the	participation	of	an	empowered	workforce	aligned	with	the	
business	values	and	objectives	of	the	organization.”	[72]	(page	49).	

	

We	agree	with	the	authors	above	that	Agile	methodologies	advocate	good	engineering	practices	that	can	be	
integrated	in	the	CMMI	framework,	and	consider	the	largest	drawback	of	most	Agile	methodologies	is	a	limited	
concept	of	institution-wide	deployment.		Institutionalization	is	key	to	implementation	of	all	processes	in	CMMI,	
and	is	strongly	supported	by	a	set	of	Generic	Practices.	It	 is	our	belief	that	these	practices	could	be	used	to	
ensure	that	Agile	methodologies	are	institutionalized	in	any	organization.	

	

Agile	methods	like	Scrum	and	XP	are	practical	methods	that	can	support	different	parts	of	CMMI.	Combining	
Scrum	and	CMMI	practices	can	produce	a	more	powerful	result	than	either	alone	and	can	be	done	in	way	where	
CMMI	compliance	is	maintained.		A	more	detailed	analysis	of	a	full	implementation	of	the	Scrum	development	

ãJeff	Sutherland	1993-2010																																						 127	

process	along	with	some	XP	engineering	practices	used	at	Systematic	shows	quantitative	results	of	introducing	
good	agile	practices	and	how	to	maintain	CMMI	compliance	in	an	Agile	company.	

SCRUM	AND	CMMI:	A	MAGIC	POTION	
Systematic	was	established	in	1985	and	employs	371	people	worldwide	with	offices	in	Denmark,	USA	and	the	
UK.	It	is	an	independent	software	and	systems	company	focusing	on	complex	and	critical	IT	solutions	within	
information	 and	 communication	 systems.	 Often	 these	 systems	 are	 mission	 critical	 with	 high	 demands	 on	
reliability,	safety,	accuracy	and	usability.		

Customers	 are	 typically	 professional	 IT-departments	 in	 public	 institutions	 and	 large	 companies	 with	
longstanding	experience	in	acquiring	complex	software	and	systems.	Solutions	developed	by	Systematic	are	
used	 by	 tens	 of	 thousands	 of	 people	 in	 the	 defense,	 healthcare,	 manufacturing,	 and	 service	 industries.	
Systematic	was	 appraised	 11	November	 2005	using	 the	 SCAMPISM3	method	 and	 found	 to	 be	 CMMI	 level	 5	
compliant.	

Working	at	CMMI	level	5	brings	many	advantages.	Systematic	has	first	hand	experience	of	reduction	in	rework	
by	38%	to	42%	over	earlier	levels,	estimation	precision	deviation	less	than	10%,	and	92%	of	all	milestones	
delivered	early	or	on	time.	At	the	same	time,	extra	work	on	projects	has	been	significantly	reduced.		

More	importantly,	Systematic	has	transformed	over	twenty	years	of	experience	into	a	unified	set	of	processes	
used	by	all	software	projects.	Historical	data	are	systematically	collected	and	analyzed	to	continuously	provide	
insight	into	the	capability	and	performance	of	the	organization.		

The	use	of	a	shared	common	process	makes	 it	easier	 for	people	to	move	from	project	 to	project	and	share	
experiences	and	lessons	learned	between	projects.	Insight	into	the	capability	and	performance	of	processes	
makes	it	possible	to	evaluate	performance	of	new	processes	to	performance	of	existing	processes.	And	this	
forms	the	foundation	for	continuous	improvement.	

	

	

3	SM	Capability	Maturity	Model	Integration,	and	SCAMPI	are	service	marks	of	Carnegie	Mellon	University	

ãJeff	Sutherland	1993-2010																																						 128	

	

FIGURE	1:	CMMI	AND	SCRUM	PRODUCTIVITY	GAINS	
	

In	short,	Systematic	is	able	to	deliver	what	the	customer	has	ordered	on	schedule,	cost	and	quality	using	69%	
effort	compared	to	a	CMMI	Level	1	company	[81,	82].	This	benefit	comes	at	the	minimal	cost	of	9%	process	
focus	in	project	management	and	engineering.	CMMI	Level	5	is	increasingly	a	requirement	from	customers	and	
key	 to	obtaining	 large	contracts,	 especially	within	defence	and	healthcare.	Customers	 recognize	 that	CMMI	
Level	5	gives	high	predictability	and	better-engineered	product	 for	scalability,	maintainability,	adaptability,	
and	reliability.	

Early	results	indicate	that	when	CMMI	traditional	processes	are	optimized	using	Scrum,	the	productivity	for	
large	projects	is	doubled	and	the	amount	of	rework	is	reduced	an	additional	40%	over	that	of	CMMI	Level	5	
companies.	 It	 is	 important	 to	 note	 that	 the	 optimized	 process	 is	 a	mixed	 process,	 using	 traditional	 CMMI	
processes	to	establish	a	project	baseline	expressed	as	a	product	backlog	combined	with	Scrum	as	the	preferred	
way	to	implement	the	project	in	iterations	of	one	month	Sprints.	The	combination	of	the	CMMI	and	Scrum	into	
the	optimized	CMMI	Scrum	process	includes	the	proper	activities	to	establish	sufficient	planning	needed	by	
both	 customer	 and	 supplier,	 and	at	 the	 same	 time	 the	 flexibility	 and	adaptability	provided	by	 Scrum.	This	
combined	process	is	treated	similarly	to	any	other	process	in	CMMI.		

	

CMMI	provides	insight	into	what	processes	are	needed	to	maintain	a	disciplined	mature	organization	capable	
of	 predicting	 and	 improving	 performance	 of	 the	 organization	 and	 projects.	 Scrum	 provides	 guidance	 for	
efficient	management	of	projects	in	a	way	that	allows	for	high	flexibility	and	adaptability.	When	mixing	the	
two,	 a	 magic	 potion	 emerges,	 where	 the	 mindset	 from	 Scrum	 ensures	 that	 processes	 are	 implemented	
efficiently	while	embracing	change,	and	CMMI	ensures	that	all	relevant	processes	are	considered.		

	

10%

20%

a

30%

50%

40%

60%

CMMI 1 CMMI 5

70%

80%

90%

100%

CMMI 5
SCRUM

CMMI 1
Project effort Rework

Work

Proces focus
CMMI

SCRUM

50 %

50 %

50 %

10 %

9 %

6 %

25 %

4 %

100 %

69 %

35 %

10%

20%

a

30%

50%

40%

60%

CMMI 1 CMMI 5

70%

80%

90%

100%

CMMI 5
SCRUM

CMMI 1
Project effort Rework

Work

Proces focus
CMMI

SCRUM

50 %

50 %

50 %

10 %

9 %

6 %

25 %

4 %

100 %

69 %

35 %

ãJeff	Sutherland	1993-2010																																						 129	

Individually	CMMI	and	Scrum	has	proven	benefits	but	also	pitfalls.	An	Agile	company	may	implement	Scrum	
correctly	but	fail	due	to	lack	of	institutionalization,	(see	section	0)	or	inconsistent	or	insufficient	execution	of	
engineering	or	management	processes.	CMMI	can	help	Agile	companies	to	institutionalize	Agile	methods	more	
consistently	and	understand	what	processes	to	address.			

	

A	company	can	comply	with	CMMI,	but	fail	to	reach	optimal	performance	due	to	inadequate	implementation	of	
processes.	 Scrum	 and	 other	 Agile	 methodologies	 can	 guide	 such	 companies	 towards	 more	 efficient	
implementation	of	CMMI	process	requirements.		

	

HOW	SYSTEMATIC	ADOPTED	SCRUM	
Here	we	describe	the	generic	steps	of	the	process	Systematic	executed	that	resulted	in	the	adoption	of	Scrum,	
early	testing,	and	story	based	development.	

	

Identify	Business	Objectives	and	Needs.	CMMI	states	 [72]	 (page	55)	 that	 “successful	process-improvement	
initiatives	 must	 be	 driven	 by	 the	 business	 objectives	 of	 the	 organization”.	 Business	 objectives	 and	 needs	 are	
addressed	by	the	strategy	of	the	organization.	

	

Systematic	made	a	strategic	decision	to	use	Lean	as	the	dominant	paradigm	for	future	improvements.	Lean	has	
demonstrated	notable	results	for	many	years	in	domains	such	as	auto	manufacturing,	and	due	to	it’s	popularity,	
has	 been	 adapted	 to	 other	 domains,	 including	 product	 and	 software	 development.	 It	 was	 expected	 that	
adoption	of	a	Lean	mindset	would	facilitate	a	more	efficient	implementation	of	CMMI.		

	

The	 strategic	 decision	 to	 use	 Lean	 as	 a	 dominant	 tool	 for	 optimization	 of	 processes,	 is	 input	 to	 CMMI	
Organizational	 Process	 Focus	 	 (OPF)	 and	 driven	 by	 an	 organizational	 shared	 function	 for	 process	
improvements.		

	

Analysis.	Different	Lean	dialects	were	evaluated	and	Lean	Software	Development	[8]	was	identified	as	the	dialect	
most	relevant	to	Systematic.	Lean	Software	Development	is	an	agile	toolkit.	A	careful	interpretation	of	the	Agile	
Manifesto	shows	that	this	is	not	necessarily	in	conflict	with	CMMI	Level	5.		

	

The	Agile	Manifesto	recognizes	that	processes,	tools,	comprehensive	documentation,	contract	negotiation	and	
following	a	plan	have	value,	but	emphasizes	people,	 interactions,	working	software,	customer	collaboration	
and	responding	to	change	to	have	more	value.	“The	agile	methodology	movement	is	not	anti-methodology;	in	
fact,	many	of	us	want	to	restore	credibility	to	the	word.	We	also	want	to	restore	a	balance:	We	embrace	modeling,	
but	not	merely	to	file	some	diagram	in	a	dusty	corporate	repository.	We	embrace	documentation,	but	not	to	waste	
reams	of	paper	 in	never-maintained	and	rarely	used	tomes.	We	plan,	but	recognize	the	 limits	of	planning	 in	a	
turbulent	environment.”	[75]	

ãJeff	Sutherland	1993-2010																																						 130	

	

Successful	application	of	Lean	Software	Development	-	an	agile	toolkit,	depends	on	the	adoption	of	an	agile	
mindset	to	supplement	the	process	focus.	Systematic	values	are	consistent	with	the	Agile	Manifesto,	and	special	
focus	was	placed	on	the	following	aspects	for	new	improvements:	

	

Individuals	 and	 interactions.	 Empowerment:	 the	 person	 executing	 the	 process	 is	 also	 responsible	 for	
updating	the	process.		

	

Working	software	over	documentation.	Critical	evaluation	of	what	parts	of	the	documentation	or	process	
can	be	removed	or	refined	to	increase	the	customers	perceived	value	of	the	activities	is	essential.		

	

Responding	to	change.	Determining	how	the	process	could	be	improved	to	support	reduced	cycle	time	drove	
customer	value.			

	

Lean	competences	were	established,	through	handout	of	books,	formal	and	informal	training,	and	walk-the-
talk	activities.	Project	Managers	were	trained	in	Lean	Software	Development,	and	Mary	Poppendieck	[8]	visited	
Systematic	for	a	management	seminar	on	Lean	Software	Development.		

	

This	 seminar	 established	 an	 understanding	 of	 the	 Agile	 and	 Lean	mindset.	 Based	 on	 this	 training,	 causal	
dependencies	between	the	principles	and	tools	in	Lean	Software	Development	were	analyzed,	and	as	a	result	
test	practices	and	reduced	cycle	time	were	identified	as	good	candidates	for	initial	activities.	They	represented	
a	good	starting	point	for	implementing	Lean	and	at	the	same	time	focused	on	processes	where	improvements	
would	have	significant	effect	on	efficiency.		

	

Pilot.	Lean	advocates	that	the	people	performing	a	process	should	be	responsible	and	empowered	to	maintain	
that	process.	In	the	introduction	to	the	CMMI	OPF	process	area	CMMI	says	the	same	thing.	

	

An	analysis	of	the	causal	dependencies	in	Lean	Software	Development	led	to	the	decision	to	seek	improvements	
based	on	the	principles	of	Amplify	Learning,	Deliver	Fast,	and	Build	Integrity	In.	

	

Selected	projects	were	asked	if	they	would	like	to	pilot	improved	processes	related	to	test	and	reduced	cycle	
time	respectively.	Project	staff	were	trained	in	the	Lean	mindset	and	asked	to	suggest	how	to	adopt	Lean	into	
their	processes.	The	result	was	a	selection	of	Scrum	and	early	testing	based	on	story-based	development.		

	

ãJeff	Sutherland	1993-2010																																						 131	

The	 result	 of	 the	 pilots	were	 two-fold:	 it	 confirmed	 the	 general	 idea	 of	 using	 Lean	mindset	 as	 source	 for	
identification	of	new	improvements,	and	secondly	it	provided	two	specific	successful	improvements	showing	
how	agile	methods	can	be	adopted	while	maintaining	CMMI	compliance.		

	

Implementation.	 	 It	was	decided	to	adopt	Scrum	and	story	based	software	development	 in	 the	organization.	
Process	Action	Teams	(PATs)	were	formed	to	integrate	the	experience	and	knowledge	gained	from	the	pilots,	into	
the	processes	shared	by	all	projects	in	the	organization.	The	PATs	were	staffed	with	people	that	would	be	expected	
to	execute	the	new	process	when	released.		

	

The	largest	change	to	project	planning	is	that	features	and	work	are	planned	in	sufficient	detail	as	opposed	to	
a	complete	initial	detailed	analysis.	The	result	is	a	Scrum	Product	Backlog	with	a	complete	prioritized	list	of	
features/work	for	the	project.	All	features	have	a	qualified	estimate,	established	with	a	documented	process	
and	through	the	use	of	historical	data,	but	 the	granularity	of	 the	 features	 increase	as	 the	priority	 falls.	The	
uncertainty	that	remains	is	handled	through	risk	management	activities.		

	

The	primary	change	to	project	execution	processes,	was	to	integrate	Scrum	as	method	for	completing	small	
iterations	(Sprints),	on	a	selected	subset	of	the	work	with	highest	priority.		

This	work	verified	that	Scrum	could	be	adopted	in	project	management	while	maintaining	CMMI	compliance.	
This	 is	 important	 because,	 one	 of	 the	 first	 steps	 to	 embrace	 change	 is	 to	 ensure	 that	 project	management	
processes	 support	 and	 allow	 agility.	 In	 addition	 the	 people	 executing	 the	 process	 were	 trained	 as	 Scrum	
Masters	by	Jeff	Sutherland,	who	also	did	a	management	seminar	on	Scrum	at	Systematic.	Concurrent	to	the	
above	 pilots,	 Lean	was	 considered	 by	 all	 projects	 and	 shared	 functions	 as	 one	 of	 several	ways	 to	 identify	
possible	improvements.		

	

Result.	The	first	step	for	Systematic	in	adapting	a	Lean	mindset	resulted	in	the	adoption	of	Scrum	and	story	based	
development	as	the	recommended	way	of	working.	Systematic	provides	a	default	 implementation	of	a	Projects	
Defined	Process	(PDP)	known	as	PDP	Common.	The	PDP	Common	has	been	updated	to	integrate	Scrum	and	story	
based	development	into	the	relevant	processes.		

	

The	apparent	result	of	adopting	agile	methods	into	existing	CMMI	compliant	processes,	has	led	to	integration	
of	processes	or	process	areas	that	initially	were	implemented	separately.		The	new	processes	are	more	efficient,	
and	the	changes	have	improved	quality,	customer	and	employee	satisfaction.		

	

Risk.	Some	of	the	risks	of	applying	Agile	mindset	to	a	CMMI	organization	include:	

	

• Degrading	CMMI	compliant	processes	to	non-compliance.	

ãJeff	Sutherland	1993-2010																																						 132	

• Local	optimizations	increasing	project	efficiency	at	the	expense	of	inefficiency	at	the	organizational	level,	
e.g.	due	to	lack	of	organizational	coordination.	

	

These	risks	were	handled	by	a	central	process	team	that	kept	the	organization	on	track	with	respect	to	the	risks	
and	change	management.	The	process	team	was	responsible	for:	

• Build	and	share	competencies	on	Lean,	Agile	and	Scrum	with	the	organization.	

• Define	and	communicate	vision,	constraints	and	measures	for	adoption	of	a	Lean	mindset.	

• Encourage	and	empower	different	parts	of	the	organization	to	challenge	current	process	implementations	
with	a	Lean	mindset,	in	search	of	improvement	opportunities.	

• Collect	experiences	from	the	organization	and	consolidate	improvements	at	the	organizational	level.	

	

The	 dominant	 risk	 for	 failure	 in	 adapting	 Lean	 is	 insufficient	 understanding	 or	 adoption	 of	 Lean	 or	 Agile	
mindset.	Systematic	has	addressed	this	risk	by	inviting	Jeff	Sutherland	and	Mary	Poppendieck	to	Systematic	to	
establish	a	good	understanding	of	Lean,	Scrum	and	Agile.		

	

SYSTEMATIC	EXPERIENCE	FROM	PILOTS	
In	 a	 period	 of	 approximately	 4	months,	 two	 small	 projects	 piloted	 Scrum	and	 early	 testing	 in	 story	 based	
development.	

	

Scrum.	The	 first	 pilot	was	 initiated	 on	 a	 request	 for	 proposal,	 where	 Systematic	 inspired	 by	 Lean	 principles	
suggested	a	delivery	plan	with	bi-weekly	deliveries	and	stated	explicit	expectations	to	customer	involvement	and	
feedback.	

	

One	of	the	main	reasons	that	Systematic	was	awarded	the	contract	was	the	commitment	to	deliver	working	
code	bi-weekly	and	thereby	providing	a	very	transparent	process	to	the	customer.	During	project	execution,	a	
high	communication	bandwidth	was	kept	between	the	team,	the	customer	and	users.	This	was	identified	as	one	
of	the	main	reasons	for	achieving	high	customer	satisfaction.	

	

The	 delivery	 plan	 and	 customer	 involvement	 resulted	 in	 early	 detection	 of	 technological	 issues.	 Had	 a	
traditional	approach	been	used	these	issues	would	have	been	identified	much	later	with	negative	impacts	on	
cost	and	schedule	performance.	

	

ãJeff	Sutherland	1993-2010																																						 133	

However,	productivity	of	this	small	project	was	at	the	expected	level	compared	to	the	productivity	performance	
baseline	 for	 small	 projects.	 Another	 small	 project	 using	 Scrum	 shows	 a	 similar	 productivity	 and	 the	 same	
indications	on	high	quality	and	customer	satisfaction.	

	

At	Systematic,	productivity	for	a	project	is	defined	as	the	total	number	of	lines	of	code	produced	divided	by	the	
total	project	effort	spent	 in	hours.	These	numbers	are	gathered	 from	the	configuration	and	version	control	
system.	Data	are	attributed	with	information	related	to	programming	language,	type	of	code:	new,	reuse	or	test.	
This	definition	of	productivity	has	been	chosen	because	it	provides	sufficient	insight	and	is	very	simple	and	
efficient	to	collect.	

Systematic	 has	 established	 and	 maintains	 a	 productivity	 performance	 baseline	 (PPB)	 for	 productivity	
compared	to	project	size	estimated	in	hours,	from	data	collected	on	completed	projects	[83].	The	data	shows	
that	productivity	is	high	on	small	projects	and	declines	with	the	size	of	the	project	with	traditional	CMMI	Level	
5.	The	productivity	performance	baseline	 in	Systematic	 is	divided	into	two	groups:	small	projects	 less	than	
4000	hours	and	large	projects	above	4000	hours.		Productivity	of	small	projects	is	181%	the	productivity	of	
large	projects.	

When	comparing	the	projects	using	Scrum	to	the	current	productivity	baseline	it	is	seen	that	productivity	for	
small	 projects	 is	 insignificantly	 changed,	 but	 the	 productivity	 for	 large	 projects	 shows	 201%	 increase	 in	
productivity.	 As	mentioned	 above,	 the	 large	 projects	 did	 additional	 improvements,	 and	 it	 is	 therefore	 not	
possible	 to	 attribute	 the	 benefit	 solely	 to	 Scrum.	However	 the	people	 involved	 all	 agree	 that	 Scrum	was	 a	
significant	part	of	this	improvement.	

	

There	 is	 a	 strong	 indication	 that	 large	 projects	 in	 Systematic	 using	 Scrum	will	 double	 productivity	 going	
forward.	Small	projects	in	Systematic	already	show	a	high	productivity.	We	believe	that	this	is	because	small	
projects	in	Systematic	always	have	been	managed	in	a	way	similar	to	Scrum.	However	quality	and	customer	
satisfaction	seems	to	be	improved	and	we	believe	this	is	because	Scrum	has	facilitated	a	better	understanding	
of	how	small	projects	are	managed	efficiently.	

	

Early	testing.	Two	different	approaches	were	used	to	facilitate	early	test.	One	large	project	decided	to	use	a	story	
based	approach	to	software	development	and	another	project	decided	to	focus	on	comprehensive	testing	during	
development.		

	

The	idea	of	story-based	development	was	to	subdivide	features	of	work,	typically	estimated	to	hundreds	of	
hours	of	work	 into	 smaller	 stories	of	20-40	hours	of	work.	The	 implementation	of	 a	 story	 followed	a	new	
procedure,	where	 the	 first	 activity	would	be	 to	decide	how	 the	 story	 could	be	 tested	before	any	 code	was	
written.	This	test	could	then	be	used	as	the	exit	criteria	for	implementation	of	the	story.		

	

In	order	to	ensure	that	the	new	procedure	was	followed,	the	procedure	included	a	few	checkpoints	where	an	
inspector	would	inspect	the	work	produced,	and	decide	whether	or	not	the	developer	could	proceed	to	the	next	
activity	in	the	procedure.	These	inspections	are	lightweight,	and	could	typically	be	done	in	less	than	5	minutes.	

ãJeff	Sutherland	1993-2010																																						 134	

	

Many	 benefits	 from	 story-based	 development	 were	 immediately	 apparent.	 The	 combination	 of	 a	 good	
definition	of	when	a	story	was	complete,	and	early	incremental	testing	of	the	features,	provided	a	very	precise	
overview	of	status	and	progress	for	both	team	and	other	stakeholders.	

Developing	a	series	of	small	stories	rather	than	parts	of	a	big	feature	is	more	satisfactory,	and	creates	a	better	
focus	on	completing	a	feature	until	it	fulfills	all	the	criteria	for	being	“done”.	

This	project	finished	early,	and	reduced	the	number	of	coding	defects	in	final	test	by	38%	compared	to	previous	
processes.		

	

The	project	using	comprehensive	testing	placed	test	specialists	together	with	the	developers.	As	in	the	story	
based	approach,	this	caused	discussion	and	reflection	between	testers,	developers,	user	experience	engineers	
and	software	architects,	before	or	very	early	in	the	development	of	new	functionality.	As	a	consequence	the	
amount	of	remaining	coding	defects	in	final	test	were	reduced	by	42%.		

Based	on	these	two	projects	test	activities	should	be	an	integrated	activity	through	out	the	projects	lifetime.	
Scrum	inherently	supports	this,	through	cross-functional	teams	and	frequent	deliveries	to	the	customer.		

	

Real	needs.	A	customer	sent	a	request	for	proposal	on	a	fixed	set	of	requirements.	When	Systematic	responded,	
we	expressed	our	concern	that	the	scope	and	contents	expressed	in	the	requirements	were	beyond	the	customer’s	
real	needs.		

	

Systematic	decided	 to	openly	 share	 the	 internal	estimation	of	 the	 requirements	with	 the	 customer,	 for	 the	
purpose	 of	 narrowing	 scope	 by	 removing	 requirements	 not	 needed	 or	 too	 expensive	 compared	 to	 the	
customers	budget.	The	customer	agreed	to	re-evaluate	the	requirement	specification,	and	the	result	was	that	
requirements	and	price	were	reduced	by	50%.	

	

This	 experience	 supports	 results	 in	 a	 Standish	Group	Study	 reported	 at	XP2002	by	 chairman	 Jim	 Johnson,	
showing	that	64%	of	features	in	a	fixed	price	contract	are	never	or	rarely	used	by	end-users.	

	

We	believe	that	this	illustrates	how	important	it	is	to	have	a	high	communication	bandwidth	with	the	customer,	
in	order	to	find	out	what	the	real	needs	are.	Success	is	not	achieved	by	doing	the	largest	project,	but	by	doing	
the	project	that	provides	the	most	value	for	the	customer,	leaving	time	for	software	developers	to	work	with	
other	customers	with	real	needs.	It	gives	motivation	to	developers	to	provide	solutions	to	real	need,	which	in	
turn	benefits	dedication	and	productivity.	

Even	though	this	experience	is	related	to	activities	before	the	project	is	started,	the	challenge	of	maintaining	
close	communication	with	the	customer,	to	ensure	that	the	project	delivers	the	most	value	within	the	agreed	
constraints,	continues	and	is	strongly	supported	by	Scrum.	

ãJeff	Sutherland	1993-2010																																						 135	

GUIDE	FOR	MIXING	CMMI	AND	AGILE	
The	previous	section	has	described	how	Systematic,	an	organization	appraised	to	CMMI	Level	5,	has	adopted	
agile	methods.	 This	 section	presents	 our	 advice	 to	 the	 agile	 organizations	 on	how	 to	 adopt	 the	 concept	 of	
institutionalization.		

HOW	CMMI	CAN	IMPROVE	AGILE	
Our	focus	is	on	using	CMMI	to	help	an	organization	institutionalize	Agile	Methods.	 	We	have	all	heard	Agile	
Methods	described	by	some	as	just	another	disguise	for	undisciplined	hacking	and	of	some	individuals	who	
claim	to	be	Agile	just	because	they	“don’t	document.”		We	believe	the	value	from	Agile	Methods	can	only	be	
obtained	through	disciplined	use.	CMMI	has	a	concept	of	Institutionalization	that	can	help	establish	this	needed	
discipline.			

	

Institutionalization	 is	defined	in	CMMI	as	“the	ingrained	way	of	doing	business	that	an	organization	follows	
routinely	as	part	of	its	corporate	culture.”			Others	have	described	institutionalization	as	simply	“this	is	the	way	
we	 do	 things	 around	 here.”	 	 Note	 that	 institutionalization	 is	 an	 organizational-level	 concept	 that	 supports	
multiple	projects.	

	

CMMI	supports	institutionalization	through	the	Generic	Practices	(GP)	associated	with	all	process	areas.		For	
the	purposes	of	our	discussion,	we	will	look	at	the	12	generic	practices	associated	with	maturity	levels	2	and	3	
in	the	CMMI	[72]	pp.	39-44	and	how	they	might	help	an	organization	use	Agile	Methods.		We	have	paraphrased	
the	generic	practices	(shown	in	bold	text	below)	to	match	our	recommended	usage	with	Agile	Methods.		In	
CMMI	terms,	the	projects	in	an	organization	would	be	expected	to	perform	an	activity	that	accomplished	each	
of	these	generic	practices.		We	have	used	Scrum	as	the	example	Agile	Method	to	describe	some	of	the	activities	
that	relate	to	these	practices.	

	

Establish	and	maintain	an	organizational	policy	for	planning	and	performing	Agile	Methods	(GP	2.1).		
The	first	step	toward	institutionalization	of	Agile	Methods	is	to	establish	how	and	when	they	will	be	used	in	the	
organization.		An	organization	might	determine	that	Agile	Methods	will	be	used	on	all	projects	or	some	subset	
of	 projects	 based	 on	 size,	 type	 of	 product,	 technology,	 or	 other	 factors.	 	 This	 policy	 is	 a	 way	 to	 clearly	
communicate	the	organization’s	intent	regarding	Agile	Methods.		In	keeping	with	the	Agile	Principle	of	face-to-
face	conversions	at	“all	hands	meeting”	or	a	visit	by	a	senior	manager	during	a	project’s	kick	off	could	be	used	
to	communicate	the	policy.	

	

Establish	and	maintain	the	plan	for	performing	Agile	Methods	(GP2.2).	This	practice	can	help	ensure	that	
Agile	Methods	do	not	degrade	into	undisciplined	hacking.		The	expectation	is	that	Agile	Methods	are	planned	
and	 that	a	defined	process	exists	and	 is	 followed.	 	The	defined	process	 should	 include	a	 sequence	of	 steps	
capturing	the	minimum	essential	information	needed	to	describe	what	a	project	really	does.		The	plan	would	
also	capture	the	essential	aspects	of	how	the	other	10	generic	practices	are	to	be	implemented	in	the	project.		
In	Scrum,	some	of	this	planning	is	likely	to	be	captured	in	a	product	backlog	and/or	sprint	backlog,	most	likely	
within	a	tool	as	opposed	to	a	document.	

	

ãJeff	Sutherland	1993-2010																																						 136	

Provide	 adequate	 resources	 for	 performing	 Agile	 Methods	 (GP2.3).	 Every	 project	 wants,	 needs,	 and	
expects	 competent	 professionals,	 adequate	 funding,	 and	 appropriate	 facilities	 and	 tools.	 	 Implementing	 an	
activity	to	explicitly	manage	these	wants	and	needs	has	proved	useful.	In	Scrum,	for	example,	these	needs	may	
be	reviewed	and	addressed	at	the	Sprint	Planning	Meeting	and	reconsidered	when	significant	changes	occur.	

	

Assign	responsibility	and	authority	for	performing	Agile	Methods	(GP	2.4).	For	a	project	to	be	successful,	
clear	responsibility	and	authority	need	to	be	defined.		Usually	this	includes	a	combination	of	role	descriptions	
and	assignments.		The	definitions	of	these	roles	identify	a	level	of	responsibility	and	authority.		For	example,	a	
Scrum	Project	would	assign	an	 individual	or	 individuals	 to	 the	 roles	of	Product	Owner,	Scrum	Master,	and	
Team.	 	Furthermore,	the	roles	in	the	Team	are	likely	to	include	a	mix	of	domain	experts,	system	engineers,	
software	engineers,	architects,	programmers,	analysts,	QA	experts,	testers,	UI	designers,	etc.	Expertise	in	the	
Team	 is	 likely	 to	 include	 a	 mix	 of	 domain	 experts,	 system	 engineers,	 software	 engineers,	 architects,	
programmers,	 analysts,	 QA	 experts,	 testers,	 UI	 designers,	 etc.	 Scrum	 assigns	 the	 team	 as	 a	 whole	 the	
responsibility	 for	 delivering	 working	 software.	 The	 Product	 Owner	 is	 responsible	 for	 specifying	 and	
prioritizing	the	work.	The	Scrum	Master	is	responsible	for	assuring	the	Scrum	process	is	followed.	Management	
is	responsible	for	providing	the	right	expertise	to	the	team.	

	

Train	the	people	performing	Agile	Methods	(GP	2.5).		The	right	training	can	increase	the	performance	of	
competent	professionals	and	supports	introducing	new	methods	into	an	organization.		People	need	to	receive	
consistent	training	in	the	Agile	Method	being	used	in	order	to	ensure	institutionalization.		This	practice	includes	
determining	the	individuals	to	train,	defining	the	exact	training	to	provide,	and	performing	the	needed	training.		
Training	can	be	provided	using	many	different	approaches,	including	programmed	instruction,	formalized	on-
the-job	training,	mentoring,	and	formal	and	classroom	training.		It	is	important	that	a	mechanism	be	defined	to	
ensure	that	training	has	occurred	and	is	beneficial.		

	

Place	designated	work	products	under	appropriate	level	of	configuration	management	(GP	2.6).	The	
purpose	of	a	project	is	to	produce	a	deliverable	product	(or	products).		This	product	is	often	a	collection	of	a	
number	of	intermediate	or	supporting	work	products	(code,	manuals,	software	systems,	build	files,	etc.).		Each	
of	 these	work	products	has	a	value	and	often	goes	 through	a	series	of	steps	 that	 increase	 their	value.	 	The	
concept	of	configuration	management	is	intended	to	protect	these	valuable	work	products	by	defining	the	level	
of	control,	for	example,	version	control	or	baseline	control	and	perhaps	multiple	levels	of	baseline	control	to	
use	within	the	project.	

	

Identify	and	involve	the	relevant	stakeholders	as	planned	(GP	2.7).	Involving	the	customer	as	a	relevant	
stakeholder	is	a	strength	of	Agile	Methods.	This	practice	further	identifies	the	need	to	ensure	that	the	expected	
level	of	stakeholder	involvement	occurs.		For	example,	if	the	project	depends	on	customer	feedback	with	each	
increment,	build,	or	sprint,	and	involvement	falls	short	of	expectations	it	is	then	necessary	to	communicate	to	
the	appropriate	level,	individual,	or	group	in	the	organization	to	allow	for	corrective	action.		This	is	because	
corrective	action	may	be	beyond	the	scope	of	the	project	team.	In	advanced	Scrum	implementations,	this	is	
often	formalized	as	a	MetaScrum	[41]	where	stakeholders	serve	as	a	board	of	directors	for	the	Product	Owner.	

	

ãJeff	Sutherland	1993-2010																																						 137	

Monitor	and	control	Agile	Methods	against	the	plan	and	take	appropriate	corrective	action	(GP	2.8).	
This	practice	involves	measuring	actual	performance	against	the	project’s	plan	and	taking	corrective	action.		
The	direct	day-to-day	monitoring	is	a	strong	feature	of	the	Daily	Scrum	Meeting.		Further,	examples	of	this	can	
be	seen	in	Scrum	with	the	use	of	the	Product	Burndown	Chart	showing	how	much	work	is	 left	to	do	at	the	
beginning	of	each	Sprint	and	the	Sprint	Burndown	Chart	showing	the	total	task	hours	remaining	per	day.	Scrum	
enhances	the	effectiveness	of	the	plan	by	allowing	the	Product	Owner	to	inspect	and	adapt	to	maximize	ROI,	
rather	than	merely	assuring	plan	accuracy.	

	

Objectively	evaluate	adherence	to	the	Agile	Methods	and	address	noncompliance	(GP2.9).	This	practice	
is	based	on	having	someone	not	directly	responsible	for	managing	or	performing	project	activities	evaluate	the	
actual	activities	of	the	project.		Some	organizations	implement	this	practice	as	both	an	assurance	activity	and	
coaching	 activity.	 	 The	 coaching	 concept	 matches	 many	 Agile	 Methods.	 The	 Scrum	 Master	 has	 primary	
responsibility	 for	 adherence	 to	 Scrum	 practices,	 tracking	 progress,	 removing	 impediments,	 resolving	
personnel	problems,	and	is	usually	not	engaged	in	implementation	of	project	tasks.	The	Product	Owner	has	
primary	responsibility	for	assuring	software	meets	requirements	and	is	high	quality.	

	

Review	 the	 activities,	 status,	 and	 results	 of	 the	 Agile	 Methods	 with	 higher-level	 management	 and	
resolve	 issues	 (GP2.10).	 The	 purpose	 of	 this	 practice	 is	 to	 ensure	 that	 higher-level	 management	 has	
appropriate	visibility	into	the	project	activities.		Different	managers	have	different	needs	for	information.		Agile	
Methods	 have	 a	 high	 level	 of	 interaction,	 for	 example,	 Scrum	 has	 a	 Sprint	 Planning	Meeting,	 Daily	 Scrum	
Meetings,	a	Sprint	Review	Meeting,	and	a	Sprint	Retrospective	Meeting.		Management	needs	are	supported	by	
transparency	of	status	data	produced	by	the	Scrum	Burndown	Chart.	This,	in	combination	with	defect	data	can	
be	used	to	produce	a	customized	management	dashboard	for	project	status.	Management	responsibilities	are	
to	(1)	provide	strategic	vision,	business	strategy,	and	resources,	(2)	remove	impediments	surfaced	by	Scrum	
teams	that	the	teams	cannot	remove	themselves,	(3)	ensure	growth	and	career	path	of	staff,	and	(4)	challenge	
the	 Scrum	 teams	 to	 move	 beyond	 mediocrity.	 The	 list	 of	 impediments	 generated	 by	 the	 Scrum	 teams	 is	
transparent	 to	management	 and	 it	 is	 their	 responsibility	 to	 assure	 they	 are	 removed	 in	 order	 to	 improve	
organizational	performance.	

	

Establish	and	maintain	the	description	of	Agile	Methods	(GP	3.1).	This	practice	is	a	refinement	of	GP2.2	
above.	 	 The	 only	 real	 difference	 is	 that	 description	 of	 Agile	 Methods	 in	 this	 practice	 is	 expected	 to	 be	
organization-wide	 and	 not	 unique	 to	 a	 project.	 	 The	 result	 is	 that	 variability	 in	 how	 Agile	 Methods	 are	
performed	 would	 be	 reduced	 across	 the	 organization;	 and	 therefore	 more	 exchange	 between	 projects	 of	
people,	tools,	information	and	products	can	be	supported.	

	

Collect	the	results	from	using	Agile	Methods	to	support	future	use	and	improvement	the	organization’s	
approach	to	Agile	Methods	(GP	3.2).	This	practice	supports	the	goal	of	learning	across	projects	by	collecting	
the	results	from	individual	projects.		The	Scrum	Sprint	Retrospective	Meeting	could	be	used	as	the	mechanism	
for	this	practice.	

	

ãJeff	Sutherland	1993-2010																																						 138	

All	of	these	generic	practices	have	been	useful	in	organizations	implementing	other	processes.		We	have	seen	
that	a	number	of	these	generic	practices	have	at	least	partial	support	in	Scrum	or	other	Agile	Methods.		We	
believe	that	implementing	these	practices	can	help	establish	needed	discipline	to	any	Agile	Method.			

CRITIQUES	OF	CMM	
In	research	funded	by	the	Danish	government,	Rose	et.	al.	surveyed	the	literature	on	critiques	of	CMM	[84].	
They	observed	 that	 the	 chief	 criticism	of	CMM	 is	not	 the	process	 itself,	 but	 the	 effects	of	 focus	on	process	
orientation.	 While	 side	 effects	 of	 process	 focus	 may	 be	 viewed	 as	 simply	 poor	 CMM	 implementation,	
organizations	with	heavyweight	processes	are	highly	prone	to	poor	execution.		

	

As	with	any	other	model,	good	and	bad	implementations	of	CMM	exist.	We	believe	that	bad	implementations	
are	one	of	the	main	reasons	for	the	existence	of	many	negative	criticisms	of	CMM.	Such	implementations	are	
often	 characterized	 as	 in	 the	 table	 below,	whereas	many	 good	CMM	 implementations	 address	most	 of	 the	
criticism.	

	

One	way	to	enhance	chances	for	a	good	CMM	or	CMMI	implementation	is	to	use	Scrum.	Applying	Scrum	and	
agile	mindset	while	implementing	CMMI	will	help	to	recognize	that	CMMI	addresses	people	and	technology	
aspects,	in	a	way	fully	supportive	of	an	agile	mindset.		

More	importantly,	the	work	in	this	paper	has	shown	that	the	mix	of	CMMI	and	Scrum	blends	a	magic	potion	for	
software	development	that	is	even	better	than	the	sum	of	the	two	alone.		

We	acknowledge	that	the	CMM	criticism	listed	in	the	table	below	exist,	but	from	our	knowledge	of	CMMI	we	
consider	it	to	be	incorrect.	But	a	bad	implementation	of	CMMI	may	be	perceived	this	way.	Even	though	good	
CMMI	implementations	can	be	done	without	agile	methods,	the	table	shows	that	Scrum	will	contribute	with	a	
beneficial	focus	on	issues	stemming	from	“bad”	CMMI	implementation.	

	

ãJeff	Sutherland	1993-2010																																						 139	

CMM	criticism	 Scrum	support	

CMM	reveres	process	but	ignores	people.	 Scrum	 is	 the	 first	 development	 process	 to	 treat	
people	issues	the	same	as	other	project	management	
issues	[85].			

Does	 not	 focus	 on	 underlying	 organizational	
problems	that	should	be	solved.	

A	primary	 responsibility	of	 the	Scrum	Master	 is	 to	
maintain	 and	 resolve	 an	 impediment	 list	 that	
contains	organizational	issues,	personal	issues,	and	
technical	problems.	

Ignores	quality	in	the	software	product	assuming	an	
unproven	 link	 between	 quality	 in	 the	 process	 and	
quality	in	the	resulting	product.	Differing	project	and	
organizational	 circumstances	 may	 mean	 that	 a	
process	that	delivers	a	good	product	in	one	context	
delivers	a	poor	product	in	another	context.			

The	 Scrum	 Product	 Owner	 is	 responsible	 for	
continuously	 reprioritizing	 the	 Product	 Backlog	 to	
maximize	business	value	in	current	context.	

Lack	of	business	orientation	 The	primary	focus	of	Scrum	is	on	delivering	business	
value.	

Poor	awareness	of	organizational	context.	 Creation	 and	 prioritization	 of	 features,	 tasks,	 and	
impediments	 is	 always	 done	 in	 organizational	
context	by	inspected	and	adapting.	

Ignores	technical	and	organizational	infrastructures.	 Daily	 inspection	and	adaptation	 in	Scrum	meetings	
focuses	on	technical	and	organizational	issues.	

Encourages	 an	 internal	 efficiency	 focus	 and	 thus	
market	and	competition	blindness.	

Focus	is	on	delivering	business	value.	Type	C	Scrum	
allows	 an	 entire	 company	 to	 dominate	 a	 market	
segment	 through	 inspecting	 and	 adapting	 in	 real	
time	to	competition	[41].	

	

CONCLUSIONS	
This	paper	shows	that	CMMI	and	Scrum	can	be	successfully	mixed.	The	mix	results	in	significantly	improved	
performance	while	maintaining	compliance	to	CMMI	Level	5	as	compared	to	performance	with	either	CMMI	or	
Scrum	alone.	

	

Scrum	 pilot	 projects	 showed	 significant	 gains	 in	 productivity	 and	 quality	 over	 traditional	methods.	 These	
results	 led	 to	an	ROI	based	decision	 to	more	widely	 introduce	Scrum	and	consider	other	Agile	practices	 in	
Systematic.	 Scrum	now	reduces	every	 category	of	work	 (defects,	 rework,	 total	work	 required,	 and	process	
overhead)	by	almost	50%.	

	

This	paper	has	outlined	how	Systematic	adopted	Scrum	and	story	based	development	into	its	CMMI	processes	
inspired	from	a	strategic	focus	on	Lean.	For	Agile	companies	the	article	has	presented	how	Generic	Practices	

ãJeff	Sutherland	1993-2010																																						 140	

from	CMMI	can	be	used	to	institutionalize	agile	practices.	Furthermore	the	article	has	presented	Lean	Software	
Development	[8]	as	an	operational	tool	to	identify	improvement	opportunities	in	a	CMMI	5	company.	

	

We	think	companies	in	defense,	aerospace,	and	other	industries	that	require	high	maturity	of	processes,	should	
carefully	consider	introducing	Agile	practices	into	the	workplace	and	all	software	companies	should	consider	
introducing	CMMI	practices	into	their	environment.	

Our	recommendation	to	the	Agile	community	is	to	use	the	CMMI	generic	practices	from	CMMI	Level	3	to	amplify	
the	 benefits	 from	 Agile	 methods.	 The	 efficiencies	 of	 agile	 practice	 can	 lower	 the	 cost	 of	 CMMI	 process	
improvements	making	the	benefits	more	widely	available.	Our	recommendation	to	the	CMMI	community	 is	
that	 Agile	 methods	 can	 fit	 into	 your	 CMMI	 framework	 and	 will	 provide	 exciting	 improvements	 to	 your	
organization.	

	
	

ãJeff	Sutherland	1993-2010																																						 141	

MATURE	AGILE	WITH	A	TWIST	OF	CMMI	
	

Carsten	Ruseng	Jakobsen	

Systematic	Software	Engineering	

crj@systematic.dk	

	 Kent	Aaron	Johnson	

AgileDigm,	Incorporated	

	kent.johnson@agiledigm.com	

	
ABSTRACT	
Systematic	is	an	agile	company	working	at	CMMI	level	5,	where	the	default	way	of	working	is	based	on	Scrum	

and	 story	based	early	 testing	development.	 Solid	experiences	 in	 combining	CMMI	with	Scrum	and	 story	based	
development,	has	shown	that	the	mix	provides	strong	synergies	[2]	and	insights	into	what	CMMI	practices	fit	and	
amplify	the	execution	of	Scrum	and	story	based	early	testing	development	

This	paper	presents	 specifically	how	agile	methods	 like	Scrum	are	 successfully	 combined	with	CMMI.	CMMI	
provides	solid	support	for	what	disciplines	to	consider.	When	applied	the	disciplines	create	a	focus	on	important	
aspects	of	agile	methods	that	perhaps	are	not	normally	elaborated,	for	example	how	to	ensure	a	proper	quality	of	
a	product	backlog	or	how	to	ensure	a	proper	“production	line”	for	the	project.	This	guidance	may	not	be	needed	
for	small	agile	projects,	but	as	the	agile	movement	continues	to	grow,	and	is	used	for	larger	and	more	complex	
projects,	agile	projects	will	need	to	address	these	issues	related	to	increased	size	and	complexity.		

The	experiences	from	combining	CMMI	and	Scrum	have	led	Systematic	to	identify	examples	of	explicit	guidance	
from	CMMI	that	help	to	execute	normal	Scrum	activities	even	better.		

These	activities	can	be	implemented	in	the	spirit	of	the	agile	manifesto	and	principles	and	by	doing	so	agile	
methods	can	be	augmented	and	matured	to	ensure	that	even	larger	and	more	complex	projects	in	the	future	can	
and	will	benefit	from	agile	-	with	a	twist	of	CMMI.	

INTRODUCTION	
This	paper	presents	the	experiences	on	how	CMMI	amplifies	Agile	and	recommends	a	subset	of	activities	an	
agile	project	could	adopt	from	CMMI	to	improve	performance.	Agile	purists	and	small	agile	projects	may	find	
these	activities	non-agile	or	counter-productive;	however	in	larger	and/or	distributed	projects	these	activities	
will	prove	to	be	invaluable.		

	

The	 paper	 does	 not	 describe	 how	 to	mature	 an	 organization	 from	 CMMI	 level	 1	 to	 CMMI	 level	 2,	 but	 the	
activities	described	could	be	part	of	such	a	change.	Rather	this	paper	highlights	a	set	of	activities	that	could	be	
considered	the	glue	between	agile	only	projects	based	on	Scrum	and	the	disciplines	expected	from	projects	and	
organizations	working	toward	CMMI	level	2	or	3.		

	

This	paper	presents	how	“a	twist	of	CMMI”	can	help	establish	a	more	solid	 framework	for	agile	projects	 to	
support	even	more	complex	projects	by	adopting	some	of	the	practices	from	the	CMMI.	

ãJeff	Sutherland	1993-2010																																						 142	

	

CONTEXT	FOR	THE	EXPERIENCES	
Systematic	was	established	in	1985	and	employs	more	than	450	people	worldwide	with	offices	in	Denmark,	
Finland,	USA	and	the	UK.	It	is	an	independent	software	and	systems	company	focusing	on	complex	and	critical	
IT	solutions	within	information	and	communication	systems.	Often	these	systems	are	mission	critical	with	high	
demands	on	reliability,	safety,	accuracy	and	usability.		

	

Customers	 are	 typically	 professional	 IT-departments	 in	 public	 institutions	 and	 large	 companies	 with	
longstanding	experience	in	acquiring	complex	software	and	systems.	Solutions	developed	by	Systematic	are	
used	 by	 tens	 of	 thousands	 of	 people	 in	 the	 defense,	 healthcare,	 manufacturing,	 and	 service	 industries.	
Systematic	was	 appraised	 11	 November	 2005	 using	 the	 SCAMPISM	method	 and	 found	 to	 be	 CMMI	 level	 5	
compliant.	 During	 2006	 Systematic	 adopted	 Scrum	 and	 a	 story	 based	 early	 testing	 approach	 to	 software	
development.	

	

CMMI	provides	insight	into	what	processes	are	needed	to	maintain	a	disciplined	mature	organization	capable	
of	 predicting	 and	 improving	 performance	 of	 the	 organization	 and	 projects.	 Scrum	 provides	 guidance	 for	
efficient	management	of	projects	in	a	way	that	allows	for	high	flexibility	and	adaptability.	When	mixing	the	
two,	 a	 magic	 potion	 emerges,	 where	 the	 mindset	 from	 Scrum	 ensures	 that	 processes	 are	 implemented	
efficiently	while	embracing	change,	and	CMMI	ensures	that	all	relevant	processes	are	considered	with	proper	
discipline.	

	

Individually	CMMI	and	Scrum	has	proven	benefits,	but	also	pitfalls.	An	agile	company	may	implement	Scrum	
correctly,	but	fail	to	obtain	real	benefits	due	to	lack	of	consistent	and	sufficient	execution	of	engineering	or	
management	processes.	CMMI	can	help	agile	companies	to	institutionalize	agile	methods	more	consistently	and	
understand	what	processes	to	address.			

A	company	can	comply	with	CMMI,	but	fail	to	reach	optimal	performance	due	to	inadequate	implementation	of	
processes.	Scrum	and	other	agile	methods	can	guide	such	companies	towards	more	efficient	implementation	
of	CMMI	process	requirements.		

	

Systematic	has	gained	valuable	experiences	in	combining	Scrum	and	CMMI	that	are	relevant	both	for	projects	
in	a	CMMI	and	agile	context.		

	

EXPERIENCES	FROM	MIXING		

	

SM	Capability	Maturity	Model	Integration,	and	SCAMPI	are	service	marks	of	Carnegie	Mellon	University	

ãJeff	Sutherland	1993-2010																																						 143	

The	first	major	experience	from	working	with	Scrum	in	a	CMMI	context	is	that	CMMI	embraces	Scrum.	CMMI	
has	more	practices	and	support	for	initial	project	planning	and	for	final	delivery	and	project	closure.	In	Scrum	
terms,		CMMI	suggests	activities	before	and	after	sprints	are	executed	on	the	product	backlog.	

	

From	a	CMMI	perspective,	 the	 initial	Scrum	product	backlog	 is	created	during	project	planning	and	during	
project	execution;	sprints	are	executed	and	the	product	backlog	is	updated.	This	logically	splits	planning	into	
two	parts:	overall	CMMI	project	planning	and	detailed	agile	planning	through	Scrum.	

	

This	separation	has	led	to	overall	planning	where	work	is	planned	in	sufficient	detail	as	opposed	to	a	complete	
decomposition.	The	overall	planning	produces	a	set	of	overall	project	plans	and	a	Scrum	product	backlog	where	
a	complete	list	of	prioritized	features	or	work	for	the	project	is	managed.		

	

The	primary	change	to	project	execution	processes,	was	to	integrate	Scrum	as	the	method	for	completing	small	
iterations	(sprints),	on	a	selected	subset	of	the	work	with	highest	priority.	

Systematic	experience	indicates	that	this	mix	of	CMMI,	Scrum,	and	agile	is	beneficial,	because	

	

• CMMI	planning	can	be	considered	a	kind	of	disciplined	sprint	zero,	where	it	is	ensured	that	an	optimal		
framework	for	the	project	is	established,	including	a	high	quality	product	backlog,		a	production	line	
definition,	and	well	known	targets	and	vision	for	the	project	as	a	whole.	

• CMMI	risk	management	proactively	addresses	possible	impediments	before	they	are	encountered	by	
the	team.	

• CMMI	quality	planning	specifies	more	accurately	and	efficiently	the	quality	targets	of	the	project	and	
helps	developers	to	a	better	interpretation	of	completion	criteria	and	sprint	goals.		

• CMMI	will	ensure	that	the	project	is	tracked	as	a	whole	allowing	the	Scrum	Team	to	concentrate	on	
current	sprint,	knowing	that	they	periodically	are	informed	of	overall	project	status.	

• Scrum	requires	discipline	regarding	automatic	test,	a	nightly	build,	and	integration.	CMMI	supports	
this	need	for	discipline	and	has	led	some	projects	at	Systematic	to	monitor	“fix-time	after	failed	builds”	
for	more	 than	 a	 year.	 The	measure	 has	 proven	 to	 be	 cheap	 to	 establish,	 easy	 to	 understand,	 and	
therefore	facilitating	good	habits.	

• CMMI	expects	 the	project	 to	 seek	objective	measures	of	performance	of	 the	project’s	processes.	 In	
Scrum	progress	(of	sprints)	is	primarily	measured	through	the	sprint	burn	down	chart	and	the	sprint	
review	meeting.	The	project	manager	tracks	the	project	as	a	whole	based	on	selected	measures	within	
key	areas	like,	product	size,	earned	value,	schedule,	and	quality.	CMMI	project	planning	provides	good	
overall	plans	for	the	complete	project	where	each	completed	sprint	is	very	valuable	input.		

• CMMI	ensures	that	agile	methods	are	institutionalized,	including	
• Consistent	implementation	throughout	the	organization	and	continuous	improvement,	e.g.	Systematic	

Scrum	Guidelines,	story	inspection	checklist.	
• Role	based	training	of	all	roles,	e.g.	Scrum	Master	and	Product	Owner.	

	

ãJeff	Sutherland	1993-2010																																						 144	

When	Systematic	adopted	Scrum,	the	roles	Scrum	Master,	Product	Owner,	and	Team	were	introduced.	Most	
projects	 in	Systematic	have	a	person	who	communicates	and	understands	 the	customer.	 In	Systematic	 this	
person	is	appointed	the	role	Product	Owner.	 In	our	experience	the	Product	Owner	 is	often	also	the	Project	
Manager,	but	could	also	be	Software	Architect,	or	User	Experience	Engineer.	The	Scrum	Masters	are	in	most	
cases	 equivalent	 with	 the	 team	 leader	 roles	 in	 Systematic.	 Projects	 in	 Systematic	 are	 staffed	 with	 people	
working	full	time	on	the	project	and	the	team	is	co-located.	

	

HOW	TO	ESTABLISH	A	BETTER	INITIAL	PRODUCT	BACKLOG	
Experience.	Project	Planning	in	CMMI	is	a	disciplined	and	comprehensive	Sprint	Zero.	

	

In	order	to	run	a	good	Scrum,	it	is	vital	to	have	good	product	backlog.	When	Systematic	adopted	Scrum,	the	
project	planning	process	was	updated	to	produce	an	initial	product	backlog.	Expected	CMMI	practices	include	
decomposition	of	work	into	manageable	pieces	that	are	estimated	and	analyzed	for	dependencies,	planning	of	
stakeholder	involvement,	and	total	project	risk	assessment.		

	

In	addition	to	the	product	backlog	a	set	of	overall	project	plans	are	established.	Agile	teams	talk	about	a	sprint	
zero	 to	 establish	 the	 foundation	 for	 the	 team	 to	 do	 efficient	 sprinting.	 Project	 Planning	 in	 CMMI	 can	 be	
perceived	as	a	sprint	zero	to	produce	a	coherent	set	of	plans,	that	will	help	improve	execution	of	the	product	
backlog.	 Such	 plans	 cover	 topics	 like,	 stakeholder	 management,	 milestone	 and	 delivery	 schedules,	 cost	
estimates,	and	quality.			

	

The	initial	version	of	these	plans	are	typically	established	within	few	weeks	after	project	initiation	and	will	
focus	on	the	most	certain	elements	of	the	projects	plan,	leaving	more	uncertain	parts	to	be	managed	on	the	
product	backlog.		

	

Figure	1	shows	the	main	activities	performed	to	establish	the	project	plan.	The	sequence	shown	in	the	figure	is	
advisory.	 The	 same	 activity	 may	 be	 performed	 multiple	 times,	 and	 often	 many	 activities	 are	 performed	
simultaneously.	 Each	 of	 the	 activities	 are	 supported	 by	 short	 step-wise	 descriptions	 of	 how	 the	 activity	
normally	is	performed,	what	inputs	are	required	and	what	output	are	produced.		

	

The	descriptions	are	based	on	lessons	learned	and	best	practices	from	all	projects	within	Systematic,	and	are	
organized	with	short	outlined	descriptions	at	the	top,	and	detailed	guidelines	and	templates	at	the	bottom.	

	

This	provides	 the	 team	with	solid	support	 for	establishing	 the	projects	plans.	The	amount	of	 time	spent	 to	
establish	project	plans	varies	 from	project	 to	project,	 but	 for	most	projects,	 initial	project	planning	 can	be	
completed	within	weeks.	One	of	the	reasons	for	this	is	the	handling	of	uncertain	scope	through	Scrum	combined	
with	proper	risk	management	from	CMMI.	

ãJeff	Sutherland	1993-2010																																						 145	

	

Concurrent	 to	 the	 initial	 planning,	 the	 overall	 solution	 architecture	 and	 product	 quality	 objectives	 are	
elaborated	and	documented	by	software	architects	and	lead	developers.	

	

Before	 the	project	moves	 from	planning	 (sprint	 zero)	 to	project	 execution	 (sprinting)	 the	project	manager	
validates	 that	 the	 overall	 project	 objectives	 and	 plans	 are	 achievable	 and	 realistic,	 and	 that	 planning	 has	
reduced	project	risks	sufficiently.		

	

Many	of	the	activities	in	figure	1	are	in	line	with	the	intensions	of	Scrum,	the	main	difference	is	that	in	CMMI	
these	activities	are	elaborated	and	documented.	

	

ãJeff	Sutherland	1993-2010																																						 146	

	

FIGURE	13	OVERVIEW	OF	CMMI	PLANNING	ACTIVITIES	

	

Experience.	Two	levels	of	planning	and	tracking:	Project	as	a	whole	and	each	sprint.	

	

Sprinting	on	the	product	backlog	is	started,	when	the	project	plans	and	solution	architecture	are	approved	by	
senior	management.		

	

From	this	point	tracking	of	the	project	is	done	at	two	different	levels	concurrently.		The	project	manager	tracks	
the	projects	overall	plans	and	team(s)	tracks	progress	of	active	sprint(s).	

	

[Project Plan Approved]

[Project Approved]

Project Manager

Plan Risk
Response

Define
Scope

[Project Scope and Objectives Approved]

Create WBS

Estimate
Cost

Create Product
Backlog

Plan
Organization

Plan
Quality

Plan Risk
Management

Develop
Schedule

Budget
Cost

Identify
Stakeholders

Plan
Communications

Analyse Risks
Quantitatively

Analyse Risks
Qualitatively

Identify
Risks

Release
Project Plan

Develop Project
Management Strategy

Develop
Process

Plan
Measurement

Establish Change
Management

Establish Configu-
ration Management

Plan Purchase
and Acqusition

Plan
Contracting

Identify
Configuration Items

Plan
Process

Plan Milestones
and Deliveries

ãJeff	Sutherland	1993-2010																																						 147	

The	plans	established	with	planning	activities	provides	a	better	context	for	defining	sprint	visions	and	goals,	
compared	to	projects	only	using	a	Sprint	backlog.	They	also	allow	the	team	to	focus	on	the	sprint,	because	they	
can	rely	on	the	project	manager	tracking	the	overall	progress.	

RISKS	AND	IMPEDIMENTS	
Experience:	Planning	and	risk	management	activities	reduces	risk	of	product	backlog	

	

The	 first	draft	product	backlog	 is	assessed	 for	risk	by	 the	 team.	 	Asking	 the	 team	to	estimate	 the	products	
backlog	 using	 3-point	 estimates	 for	 effort	will	 reveal	 the	most	 uncertain	 parts	 of	 the	work	 in	 the	 Product	
Backlog.	 Conducting	 Risk	 Identification	 meetings	 will	 identify	 other	 important	 risks,	 and	 allow	 proactive	
mitigation	to	be	initiated.		

	

Experience:	Risk	management	can	proactively	prevent	impediments		

	

Scrum	 has	 a	 strong	 focus	 on	 removing	 impediments	 as	 soon	 as	 they	 are	 identified,	 however	 CMMI	 risk	
management	 activities	 focus	 on	 proactively	 identify	 some	 of	 these	 impediments	 as	 risks,	 and	 through	
mitigation	eliminate	them	before	they	occur	as	an	impediment	in	the	future.		

The	 distinction	 between	 risk	 and	 impediment	 is	 that	 risk	 describe	 a	 problem	 that	may	 occur,	whereas	 an	
impediment	is	problem	that	has	occurred	and	is	impacting	planned	progress.	

	

Risk	management	activities	are	easily	 integrated	with	Scrum	activities.	During	project	planning	 the	project	
plans	and	solution	architecture	are	inputs	for	initial	identification	of	risks.	During	project	execution,	bi-weekly	
meetings	 of	 10-15	minutes	 are	 arranged,	 where	 the	 status	 of	 known	 risks	 is	 reported	 and	 new	 risks	 are	
identified.		

	

It	is	our	experience	that	these	risk	management	meetings	should	be	kept	outside	the	daily	scrum	meeting.	New	
risks	may	be	reported	on	the	daily	scrum,	in	which	case	the	risk	manager	will	just	take	a	note.	

	

HOW	TO	ENSURE	HIGH	QUALITY	
Scrum	is	designed	to	produce	high	quality	in	terms	of	perceived	and	conceptual	integrity	where	short	iterations		
and	sprint	review	customers	are	main	drivers	for	high	quality.		

	

Experience:	Explicit	quality	plans	improves	helps	the	team	to	build	the	right	quality	in	

	

ãJeff	Sutherland	1993-2010																																						 148	

One	of	the	results	of	planning	is	a	quality	assurance	schedule	(QAS),	where	it	is	outlined	what	quality	activities	
will	be	used	to	ensure	the	quality	objectives	are	achieved.	The	QAS	may	specify		

• What	stories	are	subject	to	inspection		

• What	code	is	subject	to	review	

• What	documents	are	subject	to	what	types	of	review		

• What	unit	test	and	automatic	test	is	produced		

• What	is	included	in	the	acceptance	test	

	

A	typical	QAS	document	is	only	a	few	pages	long,	but	the	above	descriptions	can	help	a	scrum	team	to	elaborate	
and	understand	the	definition	of	done.	

	

Experiece:	Use	checklist	to	ensure	quality	of	stories	

	

One	of	the	important	aspects	of	Systematic	story	based	development	method	was	to	ensure	focus	on	early	test.	

	

ãJeff	Sutherland	1993-2010																																						 149	

	

FIGURE	14	STORY	INSPECTION	CHECKLIST	

The	quality	of	stories	are	generally	ensured	by	focus	on	early	specification	of	test	and	by	getting	somebody	else	
to	look	at	the	work	done.	

	

Developing	a	story	includes	many	different	activities,	that	need	to	be	structured	to	some	degree.		

The	Story	Completion	Checklist	accomplishes	these	goals,	by	structuring	activities	and	defining	when	work	
must	be	inspected	by	an	inspector.		

	

The	activities	in	the	checklist	all	have	a	short	5-10	line	description	in	a	procedure	called	“Execute	story”,	that	
clarifies	why	and	how	the	activity	is	performed.	

	

ãJeff	Sutherland	1993-2010																																						 150	

The	 inspector	 role	 is	 often	 appointed	 to	 a	 lead	 developer,	 and	 this	 way	 the	 inspection	 also	 serves	 as	 an	
opportunity	for	knowledge	sharing	between	experienced	and	less	experienced	developers.		

The	Story	Completion	Checklist	ensures	quality	at	the	story	level	and	makes	it	easier	for	the	developer	at	the	
same	time.		

	

TEST,	INTEGRATION,	RELEASE	AND	CONFIGURATION	MANAGEMENT	
Scrum	 promotes	 short	 iterations,	 e.g.	 one	 sprint	 per	month,	 and	 this	 in	 turn	 drives	 the	 need	 for	 efficient	
configuration	management,	test,	integration	and	release.		

	

CMMI	helps	with:	

• Establish	standards	for	production	line,	including	standard	setups	for	build-	and	test	servers	

• Establish	discipline	on	criteria	for	integration	

• Measures	to	objectively	evaluate	performance	

• Disciplines	to	maintain	integrity	of	configuration	management	system,	builds,	and	releases.	

	

Experience:	Automated	test	is	a	must	in	order	to	do	one	month	sprints	

	

When	the	sprint	duration	is	one	month,	all	tests	must	be	automated	to	the	extent	possible.	It	is	an	integrated	
part	of	developing	a	story,	to	also	implement	the	automated	test	verifying	the	story.	Automated	test	are	used	
on	the	teams	shared	repository	and	run	every	time	a	developer	commits	code	to	the	shared	build	server.		

	

Experience:	Automated	test	and	integration	must	be	supported	by	a	standard	production	line	

	

Every	project	needs	this	 infrastructure	and	therefore	we	have	established	standard	production	 line	setups,	
allowing	projects	to	get	started	faster.	

	

Experience:	Continuous	integration	must	be	supported	with	discipline	for	check	in	

		

In	order	to	avoid	chaos	when	developers	continuously	integrate	with	each	other,	we	have	defined	the	following	
criteria	for	check	in	of	code	to	the	integration	repository:	The	test	must	run	smoothly	in	the	developers	sandbox	
and	the	code	must	comply	with	the	code	standard	checked	with	FxCop	(a	static	code	analysis	tool).			

ãJeff	Sutherland	1993-2010																																						 151	

	

Experience:	Focus	on	“fix-time	after	failed	build”	drives	good	discipline	in	project	

	

Using	standard	infrastructure	setups	allows	for	efficient	data	collection	and	analysis.	In	particular	Systematic	
has	 been	 inspired	 from	 Lean	 thoughts	 on	 flow	 and	 jidoka	 (stopping	 the	 production	 line	when	 an	 error	 is	
detected).		

	

We	want	our	projects	to	be	able	to	deliver	on	a	daily	basis,	and	hence	that	unresolved	failed	builds	are	fixed	
within	a	working	day.	We	use	CruiseControl	(a	build	management	tool)	to	signal	all	developers	when	a	build	
fails.	We	also	monitor	the	objective	by	analyzing	data	from	the	build	servers	using	control	charts	like	the	one	
shown	below.		

	

	

Many	projects	have	achieved	this	one	work	day	objective,	merely	by	the	focus	on	the	measure.	The	objective	is	
easy	to	understand,	and	presenting	the	information	in	CruiseControl	and	control	charts	has	established	a	good	
habit	of	fixing	broken	builds	immediately	when	they	fail.	

	

Experience:	Periodic	audit	of	Configuration	Management	system	builds	good	habits	

	

As	part	of	every	sprint	delivery	a	work	product	evaluation	(WPE)	is	conducted	and	for	every	delivery	to	the	
customer	a	functional	configuration	audit	(FCA)	is	conducted.	The	purpose	is	to	ensure	that	the	build	product	
is	correct	and	complete.		

	

WPE	and	FCA	are	executed	and	documented	by	filling	out	check-lists	that	helps	to	ensure	that	configuration	
management	 activities	has	been	executed	 correctly	 for	 the	build	or	 release.	Usually	 these	 activities	 can	be	
accomplished	within	one	or	two	hours.		

Fix time after failed build

0,00

2,00

4,00

6,00

8,00

10,00

12,00

23
3

23
8

24
3

24
8

25
3

25
8

26
3

26
8

27
3

27
8

28
3

28
8

29
3

29
8

30
3

30
8

31
3

31
8

32
3

32
8

Build ID

Ho
ur

s

Fix Time (Hours) LCL of avg fix time Avg fix time UCL of avg fix time

ãJeff	Sutherland	1993-2010																																						 152	

	

The	experience	is	that	this	checking	of	the	configuration	management	system	on	a	monthly	basis,	builds	good	
habits	on	the	team	to	remember	configuration	management	disciplines,	and	as	a	result	builds	and	releases	are	
complete	and	correct,	and	may	be	re-created	in	the	future	should	the	need	arise.		

	

AGILE	WITH	A	TWIST	OF	CMMI	
In	[2],	[3]	we	described	how	the	generic	practices	from	CMMI	can	be	used	to	institutionalize	Scrum	in	your	
organization.	In	the	following	we	present	our	recommendations	to	activities	an	agile	project	could	consider	
adopting.	These	activities	are	inspired	by	the	mandatory	goals	and	expected	practices	from	a	subset	of	CMMI	
process	areas.		

	

We	recommend	the	following	activities	to	agile	projects:	

1. Establish	your	own	sprint	zero,	and	include	activities	in	item	2-6	below	in	it.	

2. Use	Risk	Management	to	proactively	address	risks	before	they	are	identified	as	impediments	

3. Decompose	 requirements	 into	 features	 on	 the	 product	 backlog.	 Prepare	 the	 product	 backlog	 by	
decomposing	 the	 highest	 prioritized	 features	 to	 stories	 allowing	 for	 efficient	 sprint	 planning.	 (This	
defines	what	you	are	really	going	to	do.)	

4. Use	3-point	effort	estimates	on	elements	of	the	product	backlog	during	initial	planning.	

5. Analyze	dependencies,	stakeholders,	risk	on	elements	of	product	backlog.	

6. Establish	milestone	and	delivery	plan	and	their	initial	relationship	to	product	backlog.	

7. Use	Story	Completion	Checklist	to	maintain	high	quality	of	stories	produced.		

8. Decide	and	communicate	quality	objectives	including,	what	code	and	documentation	to	formally	review	
to	elaborate	definition	of	done.	

9. Establish	standards	for	project	“production	line”	including	development,	build	servers,	and	test	servers.	

10. Automate	test	and	nightly	build,	and	measure	performance.		

11. Establish	criteria	for	committing	of	code	to	integration.		

12. Maintain	integrity	of	configuration	management,	by	using	a	checklist	for	Work	Product	Evaluation	and	
execute	it	by	the	end	of	each	sprint.	

	

CONCLUSION	
This	paper	presented	a	some	practical	advice	for	agile	projects	on	additional	activities	to	adopt	particularly	in	
larger	or	distributed	projects.	

ãJeff	Sutherland	1993-2010																																						 153	

	

Our	recommendation	to	the	Agile	community	is	to	extend	agile	methods	inspired	from	an	understanding	of	the	
mandatory	goals	and	expected	practices	for	CMMI	level	2	and	3.	These	practices	make	good	sense,	and	you	
could	argue	that	 it	has	always	 inherently	been	expected	as	part	of	your	agile	method.	 In	general	 the	CMMI	
model	provides	a	good	understanding	what	practices	to	consider	–	but	you	will	have	to	adopt	it	to	your	context,	
and	find	agile	implementations	for	the	practices.		

	

When	projects	grow,	we	believe	you	need	more	discipline.	We	have	described	how	a	more	disciplined	sprint	
zero,	risk	management,	and	various	checklists	with	minimal	effort	can	bring	you	slightly	more	discipline	into	
your	project	–	and	we	believe	that	doing	so	will	bring	success	to	larger	or	distributed	agile	projects.	

	

REFERENCES	
[1]	M.	 Poppendieck	 and	T.	 Poppendieck,	 Lean	 Software	Development:	An	 Implementation	Guide:	Addison-
Wesley,	2006.	

[2]	 J.	 Sutherland,	C.R.	 Jakobsen	and	K.A.	 Johnson,	 "CMMI	and	Scrum	 -	a	magic	potion	 for	 code	warriors"	 in	
proceedings	for	Agile	2007	

[3]	M.	K.	Kulpa	and	K.	A.	Johnson,	Interpreting	the	CMMI:	A	Process	Improvement	Approach,	Second	Edition.	
Boca	Raton:	Auerbach	Publications,	2008	

ãJeff	Sutherland	1993-2010																																						 154	

CHAPTER	5:	SCRUM	METRICS	
	

From	the	beginning,	Scrum	was	designed	to	provide	transparency	to	both	team	members	and	those	outside	the	
team.	A	typical	Scrum	maintains	a	Scrum	board	showing	columns	of	user	stories,	development	tasks	relating	
to	each	story,	and	the	state	of	each	development	task	and	tests	associated	with	each	story.	When	a	task	is	started	
a	card	is	moved	across	the	board	into	an	open	column.	When	code	is	complete	it	is	move	to	the	verification	
column	and	when	fully	tested	is	moved	to	a	done	column.	An	updated	Scrum	burndown	chart	along	with	a	
prioritized	 list	of	 impediments	 is	often	posted	as	well.	 Some	sites	even	have	Lava	 lamps	 that	 change	color	
depending	on	the	state	of	the	build	or	state	of	the	Sprint.	

	

A	manager	can	walk	by	a	Scrum	board	and	see	the	state	of	the	team	in	a	few	seconds.	If	an	impediments	list	is	
posted,	a	manager	can	add	relevant	 items	 to	his	or	her	work	 list.	This	eliminates	 the	need	 for	most	 status	
reporting,	particularly	if	critical	information	is	put	online	on	a	web	page,	a	wiki,	or	a	reporting	tool.	

	

Managing	and	tracking	costs	to	evaluate	actual	Return	on	Investment	(ROI)	can	provide	an	additional	feedback	
loop.	Earned	Value	Management	(EVM)	may	be	of	interest	to	management.	Sulaiman,	Barton,	and	Blackburn	
[86]	provide	detailed	calculations	for	EVM	and	evaluation	of	its	effectiveness	in	an	Agile	2006	research	paper.	

	

ãJeff	Sutherland	1993-2010																																						 155	

REPORTING	SCRUM	PROJECT	Progress	TO	EXECUTIVE	MANAGEMENT	
THROUGH	METRICS	
	

Brent	Barton,	Ken	Schwaber,	Dan	Rawsthorne	2005	

Contributors:	Francois	Beauregard,	Bill	McMichael,	Jean	McAuliffe,	Victor	Szalvay	

	

INTRODUCTION	
	

The	interest	in	Agile	software	methodologies	is	not	surprising.		Agile	methods	are	presenting	an	opportunity	
to	develop	software	better	and	this	is	being	noticed	in	the	business	community.	Scrum	is	particularly	of	interest	
partly	because	of	its	ROI	focus	and	quick	implementation.		While	the	efforts	of	innovators	and	early	adopters	
have	helped	us	assert	that	Agile	is	better	than	traditional	methods,	improving	the	reporting	capability	would	
help.	Even	better	would	be	able	to	report	project	progress	to	executive	management	in	a	more	compelling	way.		
At	a	Scrum	Gathering,	white	papers	were	submitted	and	discussed.		This	is	a	summary	of	those	discussions	and	
the	integration	of	the	contributions	of	many	people.		Visibility	into	project	progress	and	project	“health”	is	a	
consistent	theme	executive	management	desires.	

	

TRANSPARENCY	INTO	PROJECTS	
	

Executive	Management	needs	transparency	into	all	operations	by	viewing	important	indicators	quickly:	This	is	
especially	true	of	software	projects.		They	want	no	surprises	because	in	software	a	surprise	is	rarely	a	pleasant	
one.		It	is	worth	mentioning,	however,	that	bad	things	do	happen;	executives	know	this	and	so	does	everyone	
else.		It	is	always	a	surprise	the	first	time	one	hears	bad	news.		In	contrast,	the	kind	of	surprise	executives	hate	
the	most,	have	significant	impact	and	were	known	much	earlier	than	when	they	were	finally	informed.		The	
negative	emotional	response	to	the	surprise	is	reinforced	by	the	realization	that	decisions	were	made	on	faulty	
information	and	this	was	preventable.		

	

There	are	many	techniques	and	practices	for	assessing	the	progress	and	probable	success	of	projects.		Scrum	
provides	 four	 simple	 and	 effective	 artifacts	 for	 managing	 and	 monitoring	 project	 performance:	 Product	
Backlog,	Product	Burndown,	Sprint	Backlog	and	Sprint	Burndown.	 	Building	on	 these,	we	are	 integrating	a	
Functional	Work	Breakdown	Structure	and	a	technique	for	measuring	Earned	Business	Value.	

	

Stakeholders	and	executives	often	have	particular	interest	in	certain	areas	of	projects.		The	grouping	nature	of	
a	Work	Breakdown	Structure	(WBS)	affords	the	opportunity	to	present	progress	at	a	mid-level:	not	a	single	
view	like	a	burndown	and	not	at	a	detail	level	like	a	backlog.		By	combining	a	WBS,	transparency	can	be	attained	
quickly	with	a	few	simple,	graphical	reports	on	an	executive	dashboard	

ãJeff	Sutherland	1993-2010																																						 156	

	

	

	

	

EXECUTIVE	DASHBOARD	
	

The	 Executive	 Dashboard	 presented	 here	 is	 easily	 read,	 interpreted	 and	 provides	 the	 ability	 to	 reference	
additional	material	if	desired	(see	Figure	2:	Executive	Dashboard).		

	

ãJeff	Sutherland	1993-2010																																						 157	

	

FIGURE	15:	EXECUTIVE	DASHBOARD	

	

The	contents	of	this	dashboard	report	include:	

	

Parking	Lot:	 	This	 is	a	pictorial	 that	statuses	groups	of	 features	or	use	cases.	 	This	has	been	adopted	from	
reports	found	in	Feature	Driven	Development	(FDD).		With	the	addition	of	a	Business	Value	Index	(described	
later),	one	can	see	 the	progress	and	value	of	 this	area	 to	 the	business.	 	At	a	glance,	 the	colors	show	where	
progress	is	made,	areas	of	concern	are	and	items	not	started.		The	BVI	represents	the	total	value	of	the	project	

ATM Project Dashboard

Parking Lot

LEGEND Work Breakdown Structure

Completed
Attention
In Process
Not Started

Progress Bar

Business Value

BVI Owner

Feature Group,
Use Case Package

or Use Case

26%

25%

Business Support
Activities

KS

(17%)

(6)

17% 12%

Login Withdraw Cash Deposit Check

KS BB DR

features or stories

% complete

Planned Completion

(0%)

March 2005

17% 2%DR

Transfer Funds Buy Stamps

(3)

February 2005

(5)

(100%)

January 2005

(4)

(40%)

Planned Completion

BB

(32%)

March 2005

(2)

(0%)

March 2005

(7)

Product Burndown

-1000

-500

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5

Sprint

W
or

k

Estimated Completion
May 3, 2005

ATM

3 - Product 0 - Team 1 - Business

1- Function 0 - Structure

15 - Login

10 - Withdraw
Cash
7 - Deposit
Check
10 - Transfer

1 - Buy

Conversions

Rewrites

Refactoring

Management

Team Training

Dev/SCM/Tes
t
Dev Process

App

Tools

Maintenance

2 - Sales

1 - Marketing

1 - User

2 - User Docs

1 - Business

1 - Adapt

Space for:
 Links
 Risks
 Issues
 Highlights

$-

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

0 1 2 3 4 5

Sprint

B
us

in
es

s
Va

lu
e

ãJeff	Sutherland	1993-2010																																						 158	

and	 the	owner’s	 initials	describe	who	 is	 responsible	 for	 the	groups.	 	The	 legend	 is	 included	(see	Figure	3:	
Parking	Lot).			

	

	

Figure	16:	Parking	Lot	

	

Product	 Burndown:	 	 The	 burndown	 in	 work	 budgeted	 and	 planned	 compared	 as	 decreased	 by	 work	
completed	across	time.	 	Based	upon	this,	an	estimated	completion	date	can	be	determined	as	the	trend	line	
crosses	the	x-axis	(see	Figure	4:	Product	Burndown).		

bbb	

Figure	17:	Product	Burndown	

	

Earned	Business	Value	Graph:	This	presents	the	Business	Value	earned	compared	to	the	Planned	Business	
Value.		Variance	can	be	quickly	estimated	from	the	graph	to	assess	the	correct	prioritization	and	progress	of	
the	project	Figure	5:	Business	Value	Burnup).	

LEGEND

Completed
Attention
In Process
Not Started

Progress Bar

BVI Owner

Feature Group,
Use Case Package

or Use Case

26%

25%

Business Support
Activities

KS

(17%)

(6)

17% 12%

Login Withdraw Cash Deposit Check

KS BB DR

features or stories

% complete

Planned Completion

(0%)

March 2005

17% 2%DR

Transfer Funds Buy Stamps

(3)

February 2005

(5)

(100%)

January 2005

(4)

(40%)

Planned Completion

BB

(32%)

March 2005

(2)

(0%)

March 2005

(7)

ãJeff	Sutherland	1993-2010																																						 159	

	

Figure	18:	Business	Value	Burnup	

	

Graphical	Work	Breakdown	Structure:		This	visual	representation	provides	a	concise,	high-level	presentation	
of	the	project	work	items	(see	Figure	6:	Functional	Work	Breakdown	Structure).	

Space	for	links,	highlights,	issues	and	risks.		Every	project	and	customer	has	its	own	specific	needs.		This	space	
is	intended	for	a	few	bullet	points.	

	

WORK BREAKDOWN STRUCTURE
	

Dan	 Rawsthorne	 introduced	 a	 functional	 Work	 Breakdown	 Structure	 which	 provides	 us	 a	 structure	 for	
reporting	key	areas	within	a	project	and	also	measuring	Earned	Business	Value.		A	Work	Breakdown	Structure	
provides	“’A	deliverable-oriented	grouping	of	project	elements	which	organizes	and	defines	the	total	scope	of	
the	project.’	[87]	

b	

Many	think	of	Gantt	charts	and	Microsoft	Project	Plans	when	they	hear	the	term	Work	Breakdown	Structure.		
This	visually	appealing	format	allows	anyone	to	quickly	see	the	salient	work	required	to	accomplish	the	project	
(Project	at	a	Glance).		 	This	sample	software	project’s	WBS	looks	like	the	following,	representing	a	fictitious	
ATM	development	project	(see	Figure	6:	Functional	Work	Breakdown	Structure).	

	 	

Business Value

$-

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

0 1 2 3 4 5

Sprint

B
us

in
es

s
Va

lu
e

ãJeff	Sutherland	1993-2010																																						 160	

	

FIGURE	19:	FUNCTIONAL	WORK	BREAKDOWN	STRUCTURE	

	

Each	of	bottom	nodes	in	the	Functional	leg	is	a	use	case.		A	use	case	is	not	required	but	scenarios	of	use	cases	
and	stories	align	well	and	help	produce	useful	software.		Using	other	forms	of	requirements	does	not	invalidate	
this	structure.	

	

Notice	 the	 numbers	 in	 the	 nodes	 that	 represent	 tangible	 things	 that	 can	 be	 valued.	 	 The	 other	 items	 are	
necessary	to	deliver	the	required	results	but	do	not	have	direct	business	value.	

	

EARNED BUSINESS VALUE
	

In	order	to	represent	the	Earned	Business	Value	(EBV)	of	a	project	and	its	components,	an	additive	weight	
needs	to	be	assigned.	 	Total	Business	Value	is	determined	by	some	ROI	calculation	or	equivalent.	 	Business	
Value	 becomes	 earned	 only	 when	 the	 items	 are	 done.	 	 In	 Scrum	 terms	 this	means	 it	 is	 an	 “increment	 of	
potentially	shippable	functionality.”	Thus,	only	items	of	direct	business	value,	such	as	functionality	and	training	
should	be	assigned	weights	other	than	zero.		The	other	items	are	the	cost	of	doing	business.		By	calling	them	
“orphans”	they	need	to	be	adopted	by	items	that	do	have	value	(Note:	This	is	useful	because	it	addresses	total	
cost,	not	just	cost-per-feature	of	a	project	and	makes	visible	the	cost	of	doing	business	in	software.		Also,	the	
software	team	is	reminded	the	difference	between	important	work	and	business	value	of	the	output).	

	

Detailed	calculation	of	EBV	 is	was	published	 in	 the	Agile	2006	proceedings	 .	Here,	only	a	brief	overview	 is	
provided	for	one	calculation	[86].	In	order	to	apply	Business	Value	(BV)	to	a	project,	we	need	to	calculate	the	
Business	Value	Indexes.		The	Business	Value	Index	(BVI)	of	the	entire	ATM	project	equals	1.		For	each	level	in	
the	WBS,	the	index	is	1:	This	is	an	intermediate	value	that	will	be	used	to	calculate	the	BVI.		To	calculate	the	BVI	
of	subsequent	levels,	you	must	also	multiply	the	BVI	of	the	all	nodes	above	the	level	you	are	considering.			

	

The	next	part	is	a	bit	more	complex	but	the	pattern	is	easy	once	you	understand	it.		Remember,	the	BVI	of	the	
next	level	is	1*1=1,	the	index	of	the	Project	times	the	index	of	the	next	lower	level.		Because	the	functional	leg	
has	a	weight	of	3	and	the	business	leg	has	a	weight	of	1,	the	sum	of	the	additive	weights	of	this	level	is	3+1=4.	

ãJeff	Sutherland	1993-2010																																						 161	

Thus,	the	Index	of	the	functional	leg	is	3/4	and	the	business	leg	1/4:	This	was	obtained	by	dividing	the	weight	
of	the	leg	by	the	sum	of	the	weights	on	this	leg.	 	This	is	why	additive	weights	must	be	used.	 	So	in	order	to	
calculate	the	BVI,	multiply	the	index	of	the	target	leg	by	the	index	of	all	the	legs	above	it.		Since	the	only	leg	
above	the	functional	leg	is	the	ATM	project,	3/4	*	1	=	3/4.	the	weight	of	the	leg	by	the	sum	of	the	weights	of	all	
legs.		Thus	the	BVI	for	the	functional	leg	is	3/4	and	for	the	business	leg	is	1/4.			

	

Using	the	same	method,	the	BVI	of	the	login	use	case	is	1	*	3/4	*	1	*	15/43	=	45/172.		If	the	Total	Business	Value	
of	the	project	is	$500,000,	then	the	Earned	Business	Value	(EBV)	realized	by	completing	the	Login	Use	case	
would	be	$130,814.			

	

THE UNDERLYING DATA
	

Managing	and	reporting	effectively	is	a	lot	of	work.		The	validity	of	the	reports	is	only	as	good	as	the	validity	of	
the	data.	 	Figure	7:	WBS	in	Product	Backlog	Format	captures	the	WBS	and	calculates	the	BVI	for	each	level.		
Note	that	each	use	case	has	been	broken	into	stories	(scenarios)	and	the	weights	and	BVI	have	been	calculated	
as	well.		For	each	item	marked	as	done,	the	EBV	is	calculated.		Notice	the	bottom	row	is	done	but	there	is	no	
EBV	because	this	represents	a	cost	of	doing	business.	

	

	

FIGURE	20:	WBS	IN	PRODUCT	BACKLOG	FORMAT	

	

So,	how	does	this	information	produce	a	dashboard?		

	

PUTTING THE DATA INTO THE REPORT
	

Area Sub-Level Use Cases Value BVI Stories or Features Value BVI Estimate Done Sprint EBV

Product Function Login 15 26.2%
Gather Stakeholder Concerns and
determine postconditions 0 0% 8 1 1 $ -

Product Function Login Determine Main Success Scenario 0 0% 16 1 1 $ -
Product Function Login Code up Main Success Scenario 10 20% 80 1 1 $ 100,626
Product Function Login

Analyze Primary Business
Extensions 0 0% 30 1 1 $ -

Product Function Login Code Up "3 Strikes and You're Out" 3 6% 16 1 1 $ 30,188
Product Function Withdraw Cash 10 17.4%

Gather Stakeholder Concerns and
determine postconditions 0 0% 12 1 2 $ -

Product Function Withdraw Cash Determine Main Success Scenario 0 0% 20 1 2 $ -
Product Function Withdraw Cash Code up Main Success Scenario 7 12% 120 1 2 $ 61,047
Product Function Withdraw Cash

Analyze Primary Business
Extensions 0 0% 30 0 2 $ -

Product Function Withdraw Cash Code Up "Quick Cash Options" 3 5% 20 0 2 $ -
Product Function Deposit Check 7 12.2%

Gather Stakeholder Concerns and
determine postconditions 0 0% 20 1 2 $ -

Product Function Deposit Check Determine Main Success Scenario 0 0% 20 1 2 $ -
Product Function Deposit Check Code up Main Success Scenario 10 10% 100 0 2 $ -
Product Function Deposit Check

Analyze Primary Business
Extensions 0 0% 30 1 2 $ -

Product Function Deposit Check Code Up "Deposit Foreign Currency" 2 2% 50 0 2 $ -
Product Function Transfer Funds 10 17.4% 300 0 3 $ -
Product Function Buy Stamps 1 1.7% 100 0 3 $ -
Product Structure Conversions 0.0% 200 0
Product Structure Rewrites 0.0% 300 0
Product Structure Refactoring 0.0% 250 0
Team Team Management 0.0% 120 0
Team Team Team Training 0.0% 40 1 1

ãJeff	Sutherland	1993-2010																																						 162	

The	Product	Burndown	 is	 automatic,	 using	 the	 columns,	 Estimate,	Done	 and	 Sprint.		
Rather	 than	complete	automation,	 the	auto-filter	 feature	 in	Excel	 is	applied	 for	each	
Sprint	 and	 this	 can	 then	 be	 easily	 tabulated	 into	 this	 table	 (see	 Figure	 7:	 Product	
Burndown).		This	is	found	in	the	header	section	of	the	Product	Backlog	in	the	attached	
spreadsheet.	 	 Using	 the	 subtotal	 function	 in	 Excel	 provides	 quick	 calculations	 from	
filtered	data.	 	Applying	no	filter	calculates	the	Work	Left	before	the	start	of	Sprint	1.		
Sprint	1	was	found	by	using	a	custom	filter	where	Sprint	“is	not	equal	to	1”.		Sprint	2	
was	found	by	applying	the	filter	where	Sprint	“is	greater	than	1.”		As	long	as	any	items	
that	are	dropped	form	an	active	Sprint	is	reflected	in	the	Product	Backlog	as	planned	
for	the	next	Sprint	(unless	the	Product	Owner	changes	that	to	a	Sprint	further	out).	

	

CREATING THE PARKING LOT
	

The	Parking	Lot	is	created	using	the	filters	as	well.		For	the	“Deposit	Check”	use	case,	filter	on	Deposit	Check	in	
the	use	case	column.		The	number	of	stories	equals	5	so	this	will	go	in	that	middle	of	the	diagram	(see	Figure	8:	
Deposit	Check	Progress	Indicator).		The	total	estimated	time	to	completion	is	220	and	the	total	estimate	of	time	
where	“Done”	is	filtered	to	1	is	70.		Thus,	the	percentage	complete	is	70/220	~32%.		Using	the	elements	in	the	
“Parking	Lot	Construction”	tab	in	the	spreadsheet,	you	can	copy	and	paste	the	progress	bar,	so	it	graphically	
approximates	this	completion	value.		Since	Scrum	uses	forward	looking	estimates,	it	is	possible	for	a	use	case	
or	feature	group	to	show	negative	progress	compared	to	a	previous	report	as	new	information	causes	estimates	
to	increase.		The	date	is	formatted	in	month	and	year	but	can	be	reformatted	to	reflect	the	lengths	of	iterations.	

	

						 	

FIGURE	22:	DEPOSIT	CHECK	PROGRESS	INDICATOR	

	

EARNED BUSINESS VALUE
	

Earned	Business	Value	is	easily	calculated	by	filtering	on	the	Done	field	for	a	value	of	1.	 	Then	filter	on	the	
Sprints	up	to	and	including	the	one	being	calculated	using	the	custom	filter	“is	less	than	or	equal	to.”		This	yields	
the	data	in	the	EBV	column	for	each	Sprint	(see	Figure	9:	Earned	Business	Value	Data).		This	is	located	in	the	
“EBV”	tab	in	the	accompanying	spreadsheet.		Note	the	Planned	Business	Value	is	calculated	initially.		Value	is	

12%

Deposit Check

DR

(3)

(32%)

March 2005

LEGEND

Completed
Attention
In Process
Not Started

Progress Bar

BVI Owner

Feature Group,
Use Case Package

or Use Case

features or stories

% complete

Planned Completion

Sprint Work Left
0 2362
1 2052
2 1152
3
4
5

FIGURE	21:	PRODUCT	
BURNDOWN	

ãJeff	Sutherland	1993-2010																																						 163	

typically	realized	using	an	‘S’	curve.		The	sample	here	has	only	5	data	points	so	the	smoothing	feature	was	used	
for	the	Planned	Business	Value.		If	the	project	is	highly	emergent	(little	planning	beyond	the	current	Sprint)	the	
planned	business	value	will	only	be	one	row	ahead	of	the	earned	business	value.	

	

CONCLUSIONS	
	

By	taking	advantage	of	the	visibility	that	Agile	methodologies	provide,	we	can	deliver	meaningful	information	
all	 the	 way	 up	 to	 Executive	 Management	 using	 graphical	
representations.	 	 The	 addition	 of	 a	 functional	 work	 breakdown	
structure	provides	the	ability	to	view	the	project	at	multiple	levels	
of	granularity.			

	

	

NOTES
	

Many	 other	 metrics	 can	 be	 derived	 from	 the	 core	 data,	 including	 early	 warning	 indicators	 and	 schedule	
variances.			

	

How	weights	are	applied	so	they	are	additive	can	be	debated	or	can	be	simple.		This	should	be	coordinated	with	
the	business	and	financial	people	to	use	their	calculators	to	help	derive	this.			

Sprint Planned Business Value Earned Business Value
0 -$ -$
1 100,000$ 130,814$
2 150,000$ 191,861$
3 300,000$
4 475,000$
5 500,000$

Note:
This column represents skewed
data because of graph
smoothing. Because there are
only 5 data points, a standard S-
shaped Business Value is not
represented well without
smoothing

FIGURE	23:	EARNED	BUSINESS	VALUE	DATA	

ãJeff	Sutherland	1993-2010																																						 164	

CHAPTER	6:	SCRUM	TUNING		

	
There	is	only	one	Scrum	and	one	set	of	core	processes.	The	inspect	and	adapt	rules	of	Scrum	allow	it	to	be	fine	
tuned	for	any	organization.	However,	one	of	the	goals	of	the	first	Scrum	was	to	multiple	productivity	by	an	
order	of	magnitude.	The	Smalltalk	development	environment	created	by	the	first	Scrum	at	Easel	Corporation	
had	a	money	back	guarantee	to	double	productivity	the	first	month	of	use.	This	may	be	the	only	money	back	
guarantee	of	its	type	seen	in	the	software	industry.		

	

There	are	some	leaders	in	the	Agile	community	that	view	productivity	increases	as	marginal	-	zero	to	25%.	
They	do	Agile	development	to	improve	quality	and	the	lifestyle	of	the	development	team.	While	these	goals	are	
laudable,	they	are	a	prescription	for	getting	your	development	team	outsourced.	There	is	a	Scrum	team	in	St.	
Petersburg,	Russia,	that	can	give	you	a	velocity	of	seven	times	a	typical	waterfall	team	and	developer	salaries	
are	much	 lower	 than	 in	 the	U.S.	or	Europe.	Scrum	was	designed	 to	enable	 teams	 in	 the	U.S.	and	Europe	 to	
produce	software	at	half	the	cost	of	a	waterfall	team	in	India,	Dubai,	Russia,	or	China.	Keeping	a	job	is	the	first	
step	to	job	satisfaction.	

	

One	of	the	motivating	factors	in	creating	Scrum	was	the	Borland	Quattro	Pro	project	documented	in	detail	by	
James	 Coplien	when	 he	was	 at	 ATT	 Bell	 Labs	 [2].	 Each	 developer	 on	 this	 project	 generated	 1000	 lines	 of	
production	C++	code	every	week	for	three	years.	 In	comparison,	productivity	on	the	recent	Microsoft	Vista	
project	was	1000	lines	of	code	per	developer	per	year.	The	Borland	Quattro	Project	was	52	times	as	productive	
as	the	Microsoft	Vista	project	measured	by	lines	of	code.	

	

Mike	Cohn,	in	his	book	on	User	Stories	[69],	documents	a	well	running	Scrum	of	6	people	that	reimplemented	
an	application	with	1/10	of	the	resources	of	a	team	that	had	used	traditional	Waterfall	practices	to	implement	
that	same	functionality.	The	first	Scrum	at	Easel	Corporation	achieved	the	same	level	of	productivity.	More	
recently,	the	SirsiDynix	project	demonstrated	that	an	outsourced,	distributed	Scrum	on	a	large	project	with	
over	 one	million	 lines	 of	 Java	 code	 could	 achieve	 about	 the	 same	 high	 level	 of	 productivity	 [29]	 as	 small	
collocated	teams.	

	

It	is	therefore	surprising	when	consulting	with	the	many	companies	using	Scrum	that	some	get	little	increase	
in	productivity,	some	double	productivity,	some	quadruple	it,	but	few	achieve	the	order	of	magnitude	increase	
for	which	Scrum	was	designed.	Just	like	Rugby	teams,	some	companies	implement	well	and	win	all	the	time.	
Others	do	not	do	as	well.	When	you	look	under	the	hood	you	find	that	the	implementation	of	play	is	done	poorly	
for	some	teams.	

	

In	an	attempt	to	illustrate	good,	better,	and	best	implementations	of	Scrum,	implementations	of	Scrum	were	
classified	 into	Type	A,	Type	B,	and	Type	C.	People	 thought	 these	were	different	Scrums	with	different	core	
practices.	The	core	practices	are	the	same.	However,	the	style	of	some	implementations	are	better	than	others	

ãJeff	Sutherland	1993-2010																																						 165	

with	 improved	velocity	and	quality	achievements.	We	wanted	 to	analyze	 them	so	 that	Scrum	practitioners	
could	see	the	effect	of	rigorously	implementing	the	basic	Scrum	practices	and	doing	it	in	ways	that	radically	
improved	development.	This	is	Scrum	tuning,	or	ways	of	implementing	the	core	practices	of	Scrum	at	different	
levels	of	rigor	and	adding	some	special	sauce	that	takes	the	Scrum	implementation	from	“good”	to	“great.”	

	

A	 better	 way	 to	 describe	 the	 evolution	 of	 Scrum	 styles	 is	 to	 show	 how	 focus	 on	 impediments	 in	 Scrum	
implementations	paved	 the	way	 for	more	 rigorous	 implementations	of	Scrum.	 Initially	we	were	concerned	
about	making	a	team	successful,	then	it	became	apparent	the	making	the	product	successful	was	a	higher	goal.	
Once	that	was	achieved,	we	noticed	the	best	product	doesn’t	always	win.	The	company	as	a	whole	must	inspect	
and	adapt	and	become	Agile	along	with	the	software	developers.		 	

ãJeff	Sutherland	1993-2010																																						 166	

	

TYPE	B	SCRUM	CONTINUOUS	FLOW:	ADVANCING	THE	STATE	OF	THE	ART4	
	

Jeff	Sutherland,	Ph.D.	

Patientkeeper,	Inc.,	Brighton,	MA,	2005.	

	

INTRODUCTION	
	

Scrum	is	a	process	designed	to	add	energy,	focus,	clarity,	and	transparency	to	software	product	development.	
It	 can	 increase	 speed	of	development,	 align	 individual	 and	corporate	objectives,	 create	a	 culture	driven	by	
performance,	 support	 shareholder	 value	 creation,	 achieve	 consistent	 communication	 of	 performance	 at	 all	
levels,	and	enhance	individual	development	and	quality	of	life.	Scrum	adds	value	to	the	working	life	of	software	
developers,	 while	 demonstrating	 to	 management	 that	 radically	 increased	 throughput	 is	 possible	 and	
sustainable	over	time.	

	

BACKGROUND	ON	SCRUM	
	

In	1983	I	began	work	on	better	software	development	processes	at	Mid-Continent	Computer	Services	in	Denver	
doing	data	processing	for	over	150	banks	across	the	United	States.	This	work	was	continued	at	Saddlebrook	
Corporation,	Graphael,	Inc.,	and	Object	Databases	on	the	MIT	campus	in	Cambridge,	MA	during	1986-1993.	The	
goal	was	to	deliver	better	software	sooner	while	improving	the	working	environment	for	developers.		Software	
teams	are	often	late	and	over	budget	and	developers	are	usually	blamed	for	failure.	They	are	often	punished	
and	forced	to	endure	“death	marches”	where	they	regularly	burn	out	and	quit	as	quality	deteriorates,	morale	
degenerates,	and	people	are	forced	to	work	harder	to	produce	less.	Professor	Peter	Senge	of	MIT	views	this	
phenomenon	as	generic	 to	U.S.	management	whose	 leadership	 is	dedicated	 to	mediocrity	and	destroys	 the	
spirit	of	the	people	[88].	

	

In	 fact,	 as	 extensive	data	 shows	 from	an	 advanced	 Scrum	 implementation	 at	 PatientKeeper,	 Inc.	 (see	 later	
chapter),	late	projects	are	usually	the	result	of	management	failure.	Resources	are	continually	diverted	to	non-
critical	activities	instead	of	being	fully	allocated	to	projects,	and	corporate	waste	in	the	form	of	unnecessary	
meetings	and	beaurocracy	is	rampant.	Management’s	failure	to	track	and	remove	these	corporate	impediments	
causes	productivity	loss.	A	recent	CIO	Magazine	survey	showed	that	96%	of	CIOs	in	the	United	States	have	no	
information	on	project	status	during	the	middle	of	a	project.	Flying	blind	leads	to	regular	project	crashes.	Lack	

	

4	First	published	in	Cutter	Agile	Project	Management	Advisory	Service:	Executive	Update,	2006.	

ãJeff	Sutherland	1993-2010																																						 167	

of	visibility	inside	projects,	particularly	waterfall	projects,	allows	management	to	blame	the	developers	instead	
of	taking	the	consequences	and	learning	from	their	actions.	

	

Project	success	is	only	a	preliminary	objective	of	Scrum.	Our	goal	is	to	create	an	environment	where	developers	
exceed	management	expectations	and	create	new	products	faster	than	marketing,	sales,	and	customers	can	
absorb	them.	This	enables	a	world-class	Scrum	development	team	that	can	focus	on	exceptionally	high	quality	
and	usability	while		positioning	their	company	to	dominate	a	market.			

	

After	evolving	concepts	at	four	companies,	the	first	Scrum	was	launched	at	Easel	Corporation	in	1993	with	the	
help	of	Jeff	McKenna	and	John	Scumniotales,	the	first	Scrum	Master.	Results	exceeded	all	expectations	and	the	
experience	was	life-changing	for	the	development	team.	In	1995,	Ken	Schwaber	observed	Scrum	in	action	and	
presented	the	first	paper	on	Scrum	at	OOPSLA.	Ken	and	I	co-developed	Scrum	for	industry-wide	deployment	
using	many	companies	as	laboratories	to	enhance	and	scale	Scrum.	In	1999,	Mike	Beedle	standardized	Scrum	
as	an	organizational	pattern	at	the	Pattern	Languages	of	Programming	Design	(PLoP)	Conference	and	in	2001,	
the	 three	 of	 us	 co-authored	 the	Manifesto	 for	 Agile	 Software	 Development	 	 along	with	 14	 other	 software	
experts.	Two	Scrum	books	were	written	by	Ken	Schwaber	and	Mike	Beedle.	

	

A	recent	innovation	has	been	automating	real-time	data	collection	for	Scrum	activities	to	reduce	administrative	
time	required	from	developers	and	product	managers,	and	to	allow	better	reporting	to	senior	management.	A	
side	effect	of	this	automation	has	been	(1)	collapsing	bug	reporting	and	status	of	development	tasks	into	one	
system,	(2)	real	time	reporting	on	thousands	of	tasks	on	dozens	of	projects,	(3)	enhanced	ability	for	the	Product	
Owner	to	steer	the	development	team	in	the	right	direction	by	better	prioritization	of	the	Product	Backlog,	(4)	
providing	 developers	 automated	 tasks	 lists	 where	 they	 can	 more	 easily	 self-manage	 work,	 (5)	 radically	
increasing	 throughput	 for	multiple	 development	 teams,	 and	 (6)	 reducing	 project	 tracking	 overhead	 to	 60	
seconds	a	day	for	developers	and	10	minutes	a	day	for	a	project	manager.	

	

A	side	effect	of	reducing	data	collection	costs	 to	near	zero	has	been	 increased	awareness	and	management	
insight	through	total	transparency	of	project	status.	This	allows	development	leaders	and	senior	management	
to	evaluate	process	bottlenecks	and	remove	wasted	effort.	The	relationship	between	project	failures	and	the	
lack	 of	 enforcement	 of	 lean	 manufacturing	 and	 lean	 product	 development	 principles	 can	 be	 precisely	
demonstrated	through	Scrum	project	tracking	data.	Lean	principles	used	at	Toyota	and	other	companies	drive	
continuous	quality	improvement	and	can	be	used	as	a	method	to	analyse	project	management	failures.	Rothfuss	
[89]	reviewed	PatientKeeper’s	system	and	reported	that	it	achieved:	

	

• Unprecedented	transparency	

• Companywide	visibility	

• Metrics	driven	decision	making	

• Peer	pressure	and	pride	in	workmanship	driving	productivity	

ãJeff	Sutherland	1993-2010																																						 168	

	

These	qualities	make	Scrum	useful	for	implementation	of	Lean	practices.	These	practices	are	useful	for	open	
source	development	as	well	as	ISV	product	development	or	internal	IT	initiatives.	Scrum	is	moving	towards	
more	broad	application,	while	becoming	faster,	better,	cheaper,	and	more	rewarding	for	customers,	developers,	
and	managers.	

	

IMPROVING	SCRUM	IMPLEMENTATIONS	
	

One	of	the	key	influences	that	led	to	the	creation	of	the	Agile	development	processes,	particularly	Scrum,	was	
a	paper	on	Japanese	new	product	development	by	Takeuchi	and	Nonaka	[1].	The	authors	presented	a	chart	
showing	product	development	activities	(requirements,	analysis,	design,	implementation,	testing,	deployment)	
separated	into	siloed	phases	of	work	(Type	A	or	waterfall),	phases	slightly	overlapped	(Type	B),	and	all	phases	
of	 development	 overlapping	 (Type	 C).	 The	 Japanese	 viewed	 Type	 A	 product	 development	 at	 NASA	 as	 an	
outmoded	relay	race	type	of	process.	Type	B		at	Fuji-Xerox	and	Type	C	at	Honda	they	envisioned	as	similar	to	a	
Scrum	formation	 in	Rugby	where	all	 team	members	 joined	arms	and	phases	of	product	development	were	
overlapping.	

	

	

Figure	24:	Type	A,	B,	and	C	strategies	for	delivering	product	[12].	

	

One	can	reinterpret	 this	diagram	at	a	higher	 level	and	apply	 it	 to	different	 types	of	Scrum	execution.	Early	
Scrum	implementations	focus	on	helping	the	software	development	team	to	become	more	productive.	Teams	
often	do	work	within	a	timebox	called	a	Sprint.	If	no	work	is	done	within	the	current	Sprint	to	prepare	for	the	
next	Sprint,	 time	may	be	 lost	between	 iterations	while	reorganizing	 for	 the	next	Sprint	 (reset	 time	 in	Lean	
manufacturing).	If	the	Product	Owner	team	in	Scrum	works	on	reprioritizing,	specifying,	and	estimating	(with	

Type A – Isolated cycles of work

Type B – Overlapping iterations

Type C – All at once

ãJeff	Sutherland	1993-2010																																						 169	

developers)	prior	to	the	next	Sprint	Planning	meeting,	this	time	delay	can	be	eliminated.	By	reducing	reset	time	
to	zero,	a	Continuous	Flow	Scrum	allows	work	to	flow	smoothly	from	Sprint	to	Sprint	and	can	often	double	
throughput.	An	All-at-Once	Scrum	can	be	envisioned	as	pipelining	Sprints,	 i.e.	running	multiple	overlapping	
Sprints	through	the	same	Scrum	team.	This	 is	the	type	of	process	seen	at	PatientKeeper	and	at	a	few	other	
software	development	companies.		

	

Many	companies,	large	and	small,	are	experienced	with	Scrum	and	have	the	challenge	of	delivering	a	portfolio	
of	products	developed	by	multiple	synchronized	teams.	While	few	are	ready	for	a	All-At-Once	Scrum,	most	want	
to	implement	a	Continous	Flow	Scrum.	This	involves	introducing	lean	product	development	principles	to	guide	
the	self-organization	of	a	Scrum	implementation	in	a	company	setting.	There	is	also	value	in	understanding	and	
implementing	some	principles	from	lean	manufacturing,	lean	logistics,	and	lean	supplier	management	as	lean	
is	a	system	of	management	of	an	entire	organization,	more	than	a	collection	of	techniques	and	practices.	Many	
of	these	practices	are	directly	useful	for	software	development	[8].	

	

ENHANCING	SCRUM	IMPLEMENTATIONS	
	

The	 differences	 in	 a	 Team	 Scrum,	 Continuous	 Flow	 Scrum,	 and	 an	 All-At-Once	 Scrum	 have	 been	 well	
summarized	by	Ryan	Martell	 [90]	below.	A	major	 thrust	of	Scrum	 is	examining,	prioritizing,	and	removing	
impediments	 to	 shorten	 cycle	 time	 and	 deliver	 production	 software	 faster.	 Shorter	 delivery	 cycles	means	
quicker	time	to	market,	faster	evolution	of	the	product,	and	increased	knowledge	gained	by	the	product	teams.	
Toyota	has	demonstrated	that	introducing	lean	manufacturing	to	shorten	cycle	time	improves	product	quality	
and	overwhelms	competition.	New	product	is	introduced	so	fast	and	functionality	increases	and	improves	so	
quickly,	the	competition	cannot	keep	up.	

	 	

ãJeff	Sutherland	1993-2010																																						 170	

	

TABLE	1:	SCRUM	CHARACTERISTICS	[90].	

	 Team	Scrum	 Continuous	Flow	Scrum	 All-At-Once	Scrum	

Iteration/Sprint	
Overlap	

	

Down-time	 between	
Sprints/No	 overlap	
(insufficient	 Product	
Owner	engagement)	

Slight	 overlap	
(Planning/Prep)	

Complete	and	Multiple	

Level	of	Involvement	

	

Development	Team	 Product	Management	Team	 Entire	Organization	

Release	

	

Every	4	-	6	Iterations	 Every	2	–	4	Iterations	 Every	Iteration/Sprint	

Iteration	Lengths	 Fixed	 Fixed	 Multiple	 Overlapping	
w/	varying	lengths	

Cycle	 Time	 for	 New	
Requests	delivery	

	

4-6	Months	 2-3	Months	 Monthly	

Release	per	year	 Total	–	2		

2		Major		year	

patch	as	needed			

	

Total	–	4		

Quarterly	Major	(4)	

patch	as	need			

Total	-	12	

Weekly	patch,	(8)	

Monthly	update	(8)	

Quarterly	Major	(4)	

	

Here,	we	focus	on	Continuous	Flow	Scrum	which	is	the	next	step	for	companies	that	have	mastered	the	basic	
Scrum	process.	Following	the	examples	reviewed	by	Takeuchi	and	Nonaka	[12]	we	set	an	audacious	goal	–	cut	
release	 time	 in	half,	one	of	 the	prime	directives	of	 the	Toyota	Prius	project.	Average	development	 time	 for	
design	and	 implementation	of	a	new	automobile	at	Toyota	was	 four	years.	The	Prius	 team	delivered	 in	15	
months.	

	

Aggressive	goals	put	pressure	on	the	system	and	processes	must	change.	Engineering	practices	must	improve.	
Software	build	processes	must	be	automated.	Testing	must	be	started	at	the	beginning	as	it	cannot	wait	until	
development	is	done.	Product	reporting	must	be	automated	and	visible	to	all	 in	the	company.	A	long	list	of	
impediments	to	progress	emerge	when	cycle	time	is	compressed.	In	Scrum,	impediments	are	prioritized	by	the	
Scrum	Master	and	systematically	eliminated	with	the	assistance	of	the	management	team.		

	

ãJeff	Sutherland	1993-2010																																						 171	

In	Team	Scrum,	the	focus	is	on	team	performance.	Continuous	Flow	Scrum	focuses	on	Program	Management	
performance	and	product	release	(a	combination	of	management	and	Product	Owner	activities).	Continuous	
Flow	 Scrum	 does	 not	 exist	 if	 the	 company	 as	 a	 whole	 ignores	 (or	 is	 incapable	 of	 resolving)	 prioritized	
impediments	raised	by	the	Scrum	Masters.	The	Program	Management	team	must	take	responsibility	for	dealing	
with	tough	issues	embedded	in	company	cultures	that	sabotage	performance.		

	

MANAGEMENT	CHALLENGES	FOR	A	CONTINUOUS	FLOW	SCRUM	
	

The	Japanese	use	the	terms	Muda,	Muri,	and	Mura	when	applying	lean	manufacturing	principles.	Muda	is	waste.	
All	waste,	including	every	step	that	does	not	add	customer	value,	must	be	eliminated.	Muri	is	overburdening	
people,	a	process,	or	a	system.	Slack	time	must	be	introduced	into	a	system	to	eliminate	bottlenecks.	Mura	is	
unevenness	or	undue	variation	 in	process	or	product.	Process	 flow	must	be	smoothed	out.	These	practices	
follow	directly	from	queuing	theory.	

	

Many	 companies	 find	 it	 difficult	 to	 eliminate	 nonproductive	 assets,	 outmoded	 processes,	 or	 unnecessary	
hierarchy.	Bloated	artifacts,	heavyweight	project	plans,	and	people	who	are	not	adding	direct	customer	value	
need	 to	 be	 moved	 out	 of	 the	 way.	 The	 root	 of	 these	 problems	 [91]	 derives	 from	 the	 accounting	 system	
introduced	by	Sloan	in	the	1920’s	to	measure	success.	Cost	Accounting	drives	device	optimization	at	the	local	
level	which	suboptimizes	global	performance.	Higher	utilization	of	resources	(people	and	machines)	becomes	
an	 end	 in	 itself	 leading	 to	 higher	 production	 of	 inventory,	 rather	 than	 optimizing	 for	 sold	 products.	
Management	forces	people	to	work	harder	and	harder	to	produce	less	and	less	

	

The	 Toyota	 process	minimizes	 inventory	 and	 	 assumes	 process	 change	 occurs	 on	 a	 daily	 basis	 and	 these	
changes	may	 affect	 the	 entire	 company.	 The	 Director	 of	 the	 Toyota	 Training	 Institute	 points	 out	 that	 the	
practice	of	“Kaizen	mind”	assumes	that	workers	will	become	better	at	what	they	do	every	day	[92].	Failure	to	
do	 so	 is	 a	 corporate	 crisis	 and	 corporate	 cultures	 that	 are	 impervious	 to	 change	 cannot	 implement	 lean	
manufacturing	practices.	

	

Muri	and	Mura	are	the	most	insidious	and	difficult	process	burdens	to	eliminate.	Old	style	management	tries	
to	load	up	a	development	team	110%.	This	makes	them	run	slower,	just	as	trying	to	run	a	computer	process	
over	80%	starts	to	slow	it	down,	eventually	causing	the	system	to	hang	up.	This	Muri	overload	causes	Mura	
(disruptions	in	flow)	by	generating	process	bottlenecks.		

	

The	Japanese	have	moved	away	from	push	type	processes	to	pull	type	processes.	When	a	worker	needs	to	start	
the	next	step	 in	a	process,	 requirements	and	resources	are	provided	 just	 in	 time.	The	worker	“pulls”	 these	
requirements	and	resources	only	when	needed,	allowing	workflow	to	move	at	a	steady	pace.	Scrum	is	designed	
to	 take	 advantage	 of	 lean	 manufacturing	 processes	 and	 a	 Continuous	 Flow	 Scrum	 can	 more	 than	 double	
productivity	of	Team	Scrum.		

ãJeff	Sutherland	1993-2010																																						 172	

SUMMARY	
	

During	2002-2007,	the	Scrum	community	of	practice	produced	over	12000	Scrum	Masters	in	an	introductory	
course.	While	 these	 are	 only	 Scrum	Masters	 in	 training,	 some	of	 them	have	 been	 able	 to	 transform	entire	
companies.	For	example,	Yahoo!	has	gone	from	one	Scrum	Master	in	2005	to	over	100	Scrum	teams	in	2007.	
For	each	Scrum	Master,	there	appear	to	over	10	Scrum	teams	active	on	projects.	These	tens	of	thousands	of	
projects	 are	 providing	 feedback	 to	 the	 Scrum	 Community	 through	 Scrumdevelopment@yahoogroups.com,	
biannual	Scrum	Gatherings,	and	an	increasing	number	of	research	and	experience	publications.	

	

Most	 of	 the	 leading	 software	 development	 companies	 worldwide	 have	 adopted	 Scrum	 as	 a	 development	
processes	[93].	Many	of	those	who	have	successfully	executed	Team	Scrums	for	a	year	or	more	are	ready	to	
move	to	a	Continuous	Flow	Scrum.	This	requires	a	corporate	culture	change	to	eliminate	all	processes	that	do	
not	add	immediate	customer	value.	Management	has	to	move	to	a	facilitative	leadership	style	and	break	down	
traditional	hierarchies.		

	

The	Toyota	consulting	group	recently	selected	the	most	Agile	company	it	could	find	in	the	United	States.	In	six	
months	they	improved	productivity	by	80%.	Scrum	has	repeatedly	demonstrated	it	can	do	the	same	or	better.	
In	2006,	a	CMMI	Level	5	company	introduced	Scrum	as	a	process	improvement	intiative.	Defects	were	reduced	
40%,	planning	 costs	were	 reduced	80%,	and	overall	productivity	was	up	100%	[94].	They	now	bid	Scrum	
projects	at	half	the	cost	of	waterfall	projects.	Winners	may	put	their	competition	out	of	business	just	as	Toyota	
is	taking	the	lead	away	from	General	Motors.	

	

POSTSCRIPT	
	

This	paper	provided	a	brief	overview	of	a	Continuous	Flow	Scrum	when	it	was	originally	published.	A	more	
profound	insight	into	these	issues	can	be	found	through	study	of	set-based	concurrent	engineering	[57]	and	
the	theory	of	constraints	[95].	

	

When	this	paper	was	originally	written	for	the	Cutter	Agile	Project	Management	Advisory	Service,	the	editors	
asked	that	it	be	watered	down.	They	did	not	want	me	to	state	that	Toyota	would	overtake	General	Motors.	It	
had	forcefully	made	the	statement	that	Continous	Flow	Scrum	is	designed	to	create	the	Toyota	effect	of	four	
times	 productivity	 and	 12	 times	 better	 quality	 than	 competitors.	 This	 level	 of	 performance	 will	 put	 the	
competition	out	of	business.	 It	 is	 inevitable.	The	only	question	 is	one	of	 timing	and	one	only	has	to	 look	at	
Toyota’s	impact	on	General	Motors.	Little	did	I	know	how	quickly	that	problem	would	become	of	immediate	
importance.	

	

ãJeff	Sutherland	1993-2010																																						 173	

General	Motors	in	recent	years	has	improved	the	performance	of	employees	such	that	the	time	spent	on	adding	
real	value	to	the	customer	has	moved	from	a	traditional	20%	up	close	to	Toyota’s	80%.	Nevertheless,	as	Forbes	
columnist	Marilyn	Cohen	observes:	

	

“The	domestic	automakers	are	 in	a	stew,	with	General	Motors	 in	the	deepest.	Nevertheless,	GM,	the	 largest	
company	in	what	seems	to	be	a	dying	U.S.	industry,	may	get	a	new	life.	At	least	that’s	the	possibility	held	out	...	
(for)	an	alliance	between	GM’s	Chief	Richard	Wagoner,	and	Renault/Nissan	Motor’s,	Carlos	Ghosn…	Then	long-
suffering	GM	bondholders	won’t	be	exposed	to	a	Chapter	11	filing,	which	is	the	fate	many	investors	mentally	
assigned	the	company	not	long	ago	[96].”	

	

Such	 is	 the	 Toyota	Way	 side-effect.	 Of	 even	more	 interest,	 the	 strategic	 target	 for	 Toyota	 and	 some	 other	
Japanese	car	manufacturers	is	not	General	Motors,	it	is	to	eliminate	the	internal	combustion	engine.	The	lack	
of	Agility	and	the	ability	to	innovate	in	an	environment	where	leaders	are	totally	changing	the	playing	field	will	
ultimately	force	the	creative	destruction	and	acquisition	of	assets	of	the	lame	and	the	weak.	

	

ãJeff	Sutherland	1993-2010																																						 174	

FUTURE	OF	SCRUM:	CREATING	A	SCRUM	COMPANY	WITH	A	TYPE	C	ALL-AT-
ONCE	SCRUM	
	

Jeff	Sutherland,	Ph.D.	

Scrum	Inc.,	MIT/Cambridge	Innovation	Center	2011	

	

“This	is	a	very	important	paper!	It	lays	out	a	masterful	series	of	business	process	innovations	that	desperately	need	
to	be	emulated	by	most	organizations.“	Tom	Poppendieck	

	

ABSTRACT	
	

Scrum	was	 invented	 to	 rapidly	 drive	 innovative	 new	 product	 to	market.	 Six	month	 releases	 used	 to	 be	 a	
reasonable	time	from	for	an	enterprise	system.	Now	it	is	three	months	for	a	major	new	release,	one	month	for	
upgrades,	and	one	week	for	maintenance	releases.	The	Scrum	development	process	was	designed	to	enhance	
productivity	and	reduce	time	to	market	for	new	product.	In	this	paper,	one	of	the	inventors	of	Scrum	goes	back	
to	Scrum	basics	 and	designs	All-At-Once	Scrum	using	multiple	overlapping	Sprints	within	 the	 same	Scrum	
teams.	This	methodology	delivers	 increasing	application	 functionality	 to	market	at	a	pace	 that	overwhelms	
competitors.	To	capture	dominant	market	share	requires	senior	management	participation	in	a	MetaScrum	for	
release	planning,	variable	length	Sprints,	overlapping	Sprints	for	a	single	team,	pre-staging	Product	Backlog,	
daily	Scrum	of	Scrums	meetings,	and	automation	and	integration	of	Product	Backlog	and	Sprint	Backlog	with	
real-time	reporting.	A	practical	example	of	All-At-Once	Scrum	describes	how	mobile/wireless	product	teams	
implemented	Scrum	process	automation	beginning	in	2000	and	achieved	hyperproductive	revenue	growth	by	
displacing	dominant	vendors	in	2007.	Administrative	overhead	for	over	45	enterprise	product	releases	a	year	
is	less	than	60	seconds	a	day	per	developer	and	less	than	10	minutes	a	day	for	a	Project	Manager.	While	All-At-
Once	Scrum	is	not	for	beginners,	this	professional	implementation	of	Scrum	companywide	is	faster,	better,	and	
cooler	than	previous	implementations.	

	

1.	SCRUM	EVOLUTION	
	

Evolution	occurs	in	dynamic	response	to	environmental	demands.	Now	that	the	Scrum	community	has	over	
100,000	 Scrum	 Masters	 and	 hundreds	 of	 thousands	 and	 perhaps	 millions	 of	 projects	 under	 their	 belt,	
retrospection	can	help	guide	future	activities.	 In	particular,	what	did	you	do	yesterday	that	worked	(Scrum	
theory),	what	makes	sense	to	do	tomorrow	(Scrum	evolution),	and	what	is	blocking	the	way	(Scrum	dogma)	is	
worthy	of	analysis.		

	

ãJeff	Sutherland	1993-2010																																						 175	

One	of	the	key	influences	sparking	the	creation	of	the	Scrum	Agile	development	process	was	a	Harvard	Business	
Review	paper	on	Japanese	new	product	development	by	Takeuchi	and	Nonaka	[1].	A	key	component	of	their	
presentation	 was	 a	 chart	 showing	 product	 development	 separated	 into	 silo’s	 (Type	 A),	 phases	 slightly	
overlapped	(Type	B),	and	all	phases	of	development	overlapping	(Type	C).	The	Japanese	viewed	Type	A	product	
development	as	an	outmoded	relay	race	type	of	process.	Type	B	they	thought	was	similar	to	Sashimi	because	
slices	of	work	overlapped	requiring	collaboration	between	phases.	Type	C	they	envisioned	as	Scrum	where	all	
phases	of	product	development	were	done	simultaneously.	Scrum	is	a	Rugby	formation	and	they	viewed	an	
“all-at-once”	process	as	similar	to	a	Rugby	team	moving	down	the	field	passing	the	ball	back	and	forth	to	one	
another.	

	

	

FIGURE	25:	TYPE	A,	B,	AND	C	STRATEGIES	FOR	DELIVERING	PRODUCT	[12].	

	

After	discussing	the	notion	of	various	types	of	Scrum	with	development	 teams	at	Google,	Microsoft,	Yahoo,	
Arriba,	Adobe,	GE	Healthcare,	and	other	companies,	it	appeared	that	the	chart	above	can	be	applied	to	a	higher	
level	of	thinking	about	three	styles	of	Scrum	implementation.		

	

In	early	Scrum	implementations	(called	here	a	Team	Scrum),	all	development	occurs	within	the	timebox	of	a	
Scrum	 iteration	 called	 a	 Sprint.	 A	 side	 effect	 of	 this	 approach	 is	 downtime	 between	 iterations	 when	
reorganizing	for	the	next	Sprint.	Well	executed	Sprints	can	double	productivity	and	repeatedly	deliver	projects	
on	time,	within	budget,	with	functionality	precisely	targeted	to	end-user	demands.	

	

By	adding	product	definition	tasks	for	the	next	Sprint	into	the	current	Sprint,	a	Continuous	Flow	Scrum	allows	
work	to	flow	smoothly	from	Sprint	to	Sprint.	Product	backlog	requirements	for	the	next	Sprint	are	developed	
in	the	current	Sprint.	While	this	requires	that	a	development	team	allocate	a	small	amount	of	time	from	the	
current	Sprint	to	help	the	Product	Owner	estimate	the	Product	Backlog	for	subsequent	Sprints,	it	can	enable	

Type A – Isolated cycles of work

Type B – Overlapping iterations

Type C – All at once

ãJeff	Sutherland	1993-2010																																						 176	

high	 performance	 development	 organizations	 to	 deliver	 more	 working	 product	 than	 sales,	 marketing,	 or	
customers	can	absorb.	By	eliminated	the	development	bottleneck	the	company	can	adopt	new	strategies	and	
create	new	products	that	were	previously	impossible	to	deliver.	Most	companies	today	have	to	implement	a	
Continuous	Flow	Scrum	out	of	necessity	to	deliver	a	continuous	set	of	product	portfolio	releases	to	the	market.	
However,	high	performance	of	a	Continuous	Flow	Scrum	requires	rigorous	implementation	of	lean	practices.	

	

All-At-Once	Scrum	can	be	envisioned	as	pipelining	Sprints	by	running	multiple	overlapping	Sprints	through	the	
same	set	of	Scrum	teams.	This	 requires	experienced	Scrum	teams,	well	designed	product	architecture,	and	
automation	of	Product	and	Sprint	Backlogs.	Throughput	can	be	enhanced	to	deliver	dozens	of	new	releases	of	
enterprise	software	annually.	A	MetaScrum	is	 implemented	to	create	Agile	product	release	strategies.	On	a	
weekly	 basis,	 companies	 can	 alter	 their	 direction	 to	 deal	 with	 competitive	 threats	 and	 market	 changes.	
Competitors	can	be	overwhelmed	and	market	dominance	achieved.	

	

Takeuchi	and	Nonaka	observed	collapsing	phases	of	product	development	improved	innovation,	throughput,	
time	 to	market,	 and	 product	 acceptance.	 As	market	 pressures	 have	 evolved	 and	 changed,	 it	 is	 possible	 to	
collapse	Scrum	Sprints	to	create	more	business	opportunity.	Market	domination	is	the	goal	of	the	All-At-Once	
Scrum.	

	

2.	SCRUM	EVOLUTION	IN	PRACTICE	
	

The	evolution	of	Scrum	in	five	companies	from	1993-2001	has	been	described	previously	[18,	40].	Here	we	
focus	on	continued	evolution	of	Scrum	theory	using	PatientKeeper,	Inc.,		as	a	test	bed.	During	2001-2005	we	
automated	a	solution	for	a	Continuous	Flow	Scrum.	This	eliminated	lost	time	and	productivity	between	Sprints	
and,	 as	 observed	previously	 at	 Easel	 Corporation	 in	 1994,	 significantly	 increased	 throughput	 compared	 to	
completing	work	only	within	the	Sprint	time	box	for	which	it	is	defined.	

	

In	addition,	we	solved	the	problem	of	multiple	projects	pipelined	through	the	same	team	(or	set	of	teams)	and	
have	been	running	an	All-At-Once	Scrum	 for	over	 six	years.	This	 required	careful	automation	of	 the	sprint	
backlog	with	improved	tools	and	metrics	in	order	to	maintain	team	focus.	Daily	build	processes	and	automated	
regression	testing	was	significantly	enhanced.	Our	approach	to	Quality	Assurance	(QA)	was	modified	to	provide	
a	small	QA	team	for	each	of	four	to	six	overlapping	production	software	releases.	Pair	programming	was	used	
selectively	and	team	programming	was	common	where	many	programmers	worked	together	around	a	table	
for	the	entire	day.	

	

The	result	has	been	delivery	of	production	code	to	a	new	set	of	enterprise	customers	for	every	Sprint	with	
maintenance	Sprints	weekly,	customer	enhancement	Sprints	monthly,	and	new	application	releases	quarterly.	
By	 2004	 more	 than	 45	 enterprise	 level	 releases	 of	 PatientKeeper	 production	 software	 were	 completed,	
installed,	 and	 brought	 live	 at	 customer	 sites.	 Many	 of	 PatientKeeper’s	 customers	 are	 large	 multi-hospital	

ãJeff	Sutherland	1993-2010																																						 177	

systems	like	Partners	(Massachusetts	General	and	Brigham	and	Womens	Hospitals)	in	Boston,	Johns	Hopkins	
in	Baltimore,	and	Duke	University	Health	System	in	North	Carolina.		

	

Recently,	PatientKeeper	broke	a	record	in	deployment	time.	For	HCA,	the	largest	hospital	system	in	the	U.S.,	
PatientKeeper	brought	12	hospital	deployments	into	full	production	in	seven	months	with	new	physician	and	
administrative	desktop	and	PDA	applications.	This	was	actually	slow	by	PatientKeeper	standards,	yet	was	a	
historical	record	for	HCA.	

	

These	large	clients	provide	an	excellent	test	bed	for	scalability	of	an	All-At-Once	Scrum.	They	require	a	high	
level	of	product	adoption	by	difficult	and	discriminating	physician	users,	support	for	 large	multi-institution	
wireless	networks,	integration	with	many	clinical	and	financial	systems	at	sites	with	diverse	IT	infrastructures,	
and	thorough	testing	and	certification	by	the	customer.	

	

2.	THE	FIRST	SCRUMS	–	TEAM	SCRUM	AND	CONTINUOUS	FLOW	SCRUM	
	

Early	Team	Scrums	were	useful	for	education	and	training	on	the	pace	of	Scrum	and	particularly	suited	to	new	
Scrum	teams.	However,	it	creates	a	loss	of	time	between	Sprints	where	the	team	is	reorganizing	for	the	next	
Sprint	and	did	not	adequately	address	enterprise	scaling	issues.	

	

At	Easel	Corporation	in	1993	we	initially	applied	Team	Scrum	to	software	development	teams	when	we	built	
the	first	object-oriented	design	and	analysis	(OOAD)	tool	that	incorporated	round-trip	engineering	from	design	
to	 code	and	back	again	 In	 a	 Smalltalk	development	 environment	 [22].	Code	was	generated	 from	a	 graphic	
design	tool	and	any	changes	to	the	code	from	the	Smalltalk	integrated	development	environment	(IDE)	were	
immediately	reflected	back	into	design.	There	were	six	Sprints	for	the	first	product	release	and	the	gap	between	
Sprints	took	at	least	a	week	and	sometimes	two	weeks.	As	a	result,	we	could	only	do	9	Sprints	a	year,	losing	
25%	of	our	productivity	as	compared	to	potentially	running	12	Sprints	per	year.	This	was	viewed	as	a	serious	
impediment	by	the	Product	Owner	and	management.	

	

This	loss	of	time	needed	to	be	removed	because	survival	of	the	company	depended	on	delivery	of	an	innovative	
product	as	early	to	market	as	possible.	Each	month	of	delay	cost	millions	of	dollars	of	lost	revenue	and	gave	the	
competition	the	opportunity	to	overtake	us.	For	example,	the	Product	Manager	at	Rational	Rose	was	regularly	
showing	us	demos	of		support	for	roundtrip	engineering	as	we	were	struggling	to	be	first	to	market	with	the	
first	roundtrip	engineering	object-oriented	design	tool.	

	

In	addition	 to	 loss	of	productivity	between	Sprints	 in	a	Team	Scrum,	 it	 took	 time	during	 the	Sprint	 for	 the	
developers	to	get	enough	clarity	about	the	user	requirements	to	start	coding.	It	may	be	halfway	through	a	Sprint	
before	 the	 developers	 understand	 the	 user	 experience	well	 enough	 to	 implement	 a	 solution.	 This	 creates	

ãJeff	Sutherland	1993-2010																																						 178	

tension	between	the	Product	Owner	and	the	Scrum	Team	concerning	lack	of	understanding	of	what	to	do	next,	
substantial	slippage	of	features	into	subsequent	Sprints,	and	dissatisfaction	on	the	part	of	the	Product	Owner	
with	 delays	 in	 feature	 delivery.	 This	 churning	 phenomena	 can	 cut	 Sprint	 productivity	 in	 half,	 a	 huge	
impediment	that	needs	to	be	remedied.	

	

The	need	 to	 start	development	with	adequate	 functional	 specifications	was	observed	by	MacCormack	 [97]	
when	he	gathered	extensive	data	on	29	Hewlett	Packard	software	projects	to	assess	development	practices.	
One	 of	 the	 strongest	 productivity	 enhancers	 noted	 in	 his	 correlation	 analysis	 was	 completeness	 of	 the	
functional	 specification.	While	Agile	 specifications	 are	 designed	 to	 be	 just	 enough	 and	 no	more,	 a	 product	
specification	needs	to	be	“ready”	before	it	can	be	allowed	into	a	Sprint.	MacCormack	showed	the	definition	of	
“ready”	has	major	performance	implications.	

	

Regarding	 the	 use	 of	 specifications,	 there	 was	 a	 significant	 relationship	 between	 the	 completeness	 of	 the	
functional	 specification	 and	productivity.	 There	was	 a	weak	 relationship	 between	 the	 completeness	 of	 the	
detailed	design	specification	and	defect	rate	(p	=	0.078).	The	former	result	suggests	that	developers	are	more	
productive	to	the	degree	that	a	complete	functional	specification	exists	prior	to	coding.	This	is	intuitive,	given	
that	the	functional	specification	outlines	the	features	that	developers	must	complete.	To	the	degree	that	these	
are	stated	up	front,	developers	can	focus	solely	on	“executing”	these	features	in	code.	

	

Agile	 developers	 use	 a	 minimum	 amount	 of	 documentation	 and	 do	 not	 require	 completeness	 of	 the	
specification	 to	 start	 a	 Scrum.	 McCormack	 found	 that	 completeness	 of	 the	 design	 specification	 was	 not	
correlated	with	enhanced	productivity	and	only	slightly	reduced	the	defect	rate	which	is	consistent	with	Agile	
thinking.	However,	he	found	a	strong	correlation	between	adequate	product	specifications	and	productivity.	
This	suggests	that	minimal	functional	specifications	should	be	clear	at	the	beginning	of	a	Sprint	and	that	design	
and	technical	specifications	are	best	done	within	a	Sprint.	

	

MacCormack’s	multivariate	analysis	showed	three	primary	factors	that	lowered	defect	rate	(early	prototype,	
design	reviews,	and	integration	or	regression	testing	at	code	checkin)	and	two	primary	factors	that	increased	
productivity	 (early	 prototype	 and	 daily	 builds).	 Releasing	 a	 prototype	 to	 customers	 that	 is	 only	 40%	
functionally	 complete	 increases	 productivity	 by	 36%	 and	 adopting	 the	 practice	 of	 daily	 builds	 increases	
productivity	by	93%.	These	were	clearly	the	most	effective	Agile	practices	in	the	Hewlett	Packard	projects.	

	

Incremental	and	early	delivery	of	working	software	is	at	the	core	of	the	effectiveness	of	Agile	processes.	 In	
addition,	a	functional	specification	that	is	complete	enough	for	the	next	interation	to	allow	developers	to	begin	
work	without	false	starts	will	enhance	feature	delivery	within	Sprints	and	improve	throughput.	Despite	the	fact	
that	the	implementation	phase	is	a	small	part	of	the	overall	cost	of	a	software	project,	 the	biggest	resource	
bottleneck	on	a	software	project	 typically	occurs	with	a	shortage	of	expert	developers	whose	skills	are	not	
easily	transferable.	Constraint	analysis	shows	mathematically	that	the	biggest	bottlenecks	should	be	eliminated	
first	[95]	(just	as	in	tuning	of	a	computer	system)	and	early	delivery	of	a	functional	specification	for	a	single	
increment	helps	eliminate	the	critical	development	resource	bottleneck.	

ãJeff	Sutherland	1993-2010																																						 179	

	

While	a	Continuous	Flow	Scrum	can	improve	productivity	with	experienced	Scrum	teams,	a	Team	Scrum	with	
intervals	between	Sprints	to	assure	the	Product	Backlog	is	“ready”	may	be	the	best	way	for	a	company	to	pilot	
Scrum,	even	though	it	may	not	be	most	efficient.	It	allows	systematic	application	of	the	Scrum	process	with	
enough	time	to	refine	operations	and	regroup	between	Sprints.	It	also	forces	all-at-once	type	thinking	when	
everything	has	to	happen	for	a	specific	Sprint	within	the	time	box	of	that	Sprint.	Initially,	the	benefits	in	training	
may	overwhelm	the	lost	productivity.	Without	the	ability	to	execute	a	Team	Scrum	well,	it	is	not	possible	to	
effectively	implement	a	more	sophisticated	process.	

	

The	benefits	of	Team	Scrum	are:	

• Total	focus	on	iteration	in	process	

• Ease	of	implementation	

• Developing	and	understanding	the	pace	of	Scrum	

• Clearly	defined	iterations	

	

The	problems	with	Team	Scrum	were:	

• Loss	of	time	to	market	

• Disruption	of	pace	of	Scrum	because	of	delays	in	understanding	of	the	user	experience	

• Loss	of	productivity	(and	market	share)	due	to	resulting	delays	

	

Scrum	has	a	primary	focus	on	an	impediment	list	managed	by	the	Scrum	Master.	By	prioritizing	this	list	which	
includes	personal,	team,	and	company	issues,	the	Scrum	Master	puts	an	intense	focus	on	improving	the	Scrum	
implementation.	When	removing	impediments	most	companies	will	find	they	need	to	go	to	a	Continous	Flow	
Scrum	to	maximize	throughput.	

	

3.	CONTINUOUS	FLOW	SCRUM	
	

The	way	 to	overcome	 loss	of	 time	 to	market	with	a	Team	Scrum	 is	 to	 insert	 tasks	 in	a	 current	Sprint	 that	
prestage	work	for	a	subsequent	Sprint.	A	minimal	specification	of	the	user	experience	for	a	feature	is	defined	
and	estimated	prior	to	the	Sprint	where	it	is	implemented.	This	allows	Sprints	to	be	executed	continuously	with	
the	Sprint	Backlog	always	full	at	the	beginning	of	each	Sprint.	At	the	same	time,	it	requires	that	a	Scrum	Team	
allocate	 resources	 to	 help	 the	 Product	Owner	 estimate	 features	 for	 subsequent	 Sprints	 during	 the	 current	
Sprint.	

ãJeff	Sutherland	1993-2010																																						 180	

	

A	caveat	is	that	Continuous	Flow	Scrum	will	not	work	in	a	company	that	has	not	implemented	a	sustainable	
development	policy	and	process.	That	means	that	Scrum	teams	decide	on	what	tasks	can	be	implemented	in	a	
Sprint	and	who	will	 implement	them	using	a	normal	work	week	as	the	standard	way	to	do	business.	Many	
companies	using	Scrum	still	have	management	trying	to	jam	more	work	into	increments	than	Scrum	teams	can	
deliver	 in	 an	 allotted	 time.	 This	 results	 in	 lack	 of	 team	 autonomy,	 excessive	 overtime,	 high	 defect	 rates,	
personnel	burnout,	and	high	employee	turnover.	This	violates	a	fundamental	principle	of	lean	product	develop	
and	makes	it	impossible	for	a	team	to	enter	the	high	performance	state	for	which	Scrum	was	designed.	

	

The	key	indicators	that	Scrum	is	working	must	be	visible	in	a	Team	Scrum	before	moving	to	Continous	Flow	
Scrum:	

	

• Team	autonomy	–	the	Scrum	team	is	(and	feels)	totally	responsible	for	their	product	and	no	outside	
agency	impacts	the	workplan	of	the	team	inside	a	Sprint.	

• The	Product	Owner	is	part	of	the	Scrum	and	affects	product	design	and	implementation	within	a	Sprint	
without	disrupting	self-organization.	

• Self-transcendence	–	individuals	move	beyond	self-gratification	to	focus	on	team	performance.	

• Cross-fertilization	 –	 expertise	 is	 regularly	 shared	 across	 team	members	 and	 no	 single	 person	 is	 a	
bottleneck.	

	

Fully	 loading	the	development	queue	 in	a	Type	B	Scrum	at	all	 times	without	building	a	sustainable	pace	of	
development	will	negatively	impact	morale.	On	complex	development	projects,	it	typically	takes	a	new	engineer	
six	months	to	come	up	to	full	productivity.	If	turnover	is	20%,	you	lose	one	quarter	in	hiring	a	new	development	
and	 two	 quarters	 training	 them.	 Your	 development	 team	 productivity	 is	 down	 15%	 from	 this	 alone.	 This	
personnel	churn	can	cause	development	tasks	to	stop	and	start	as	specialized	resources	must	be	shifted	to	
complete	them,	reducing	productivity	by	another	15%.	If	morale	drives	the	pace	of	development	down	further,	
you	may	cut	productivity	in	half	with	Type	B	Sprints	that	are	implemented	too	early.	

	

Conversely,	if	Type	A	Sprints	are	running	well,	pre-staging	functional	specifications	in	the	right	way	in	a	Type	
B	Scrum	will	eliminate	churn	within	a	Sprint	and	downtime	between	Sprints.	This	has	doubled	productivity	for	
experienced	Scrum	teams.	In	companies	seeking	to	expand	market	share	and	dominant	a	market	segment,	this	
advantage	is	absolutely	compelling.	

	

In	several	companies	using	Scrum,	management	and	staff	stated	that	maximizing	development	throughput	was	
not	a	priority.	These	companies	invariably	were	having	delivery	problems	and	were	outsourcing	major	pieces	
of	their	development.	Outsourcing	was	not	solving	their	delivery	problems	and	in	many	cases	was	aggravating	

ãJeff	Sutherland	1993-2010																																						 181	

it.	In	the	long	run,	this	last	to	market	approach	is	a	losing	strategy.	If	companies	are	not	continually	getting	
better,	failure	is	just	a	matter	of	time	as	the	competition	is	always	improving.	

	

3.1 STAGING FUNCTIONAL SPECIFICATIONS FOR A TYPE B SPRINT
	

A	Type	B	Scrum	accelerates	throughput	by	keeping	the	Sprint	backlog	full	and	at	times.	This	requires	prestaging	
functional	specifications	of	the	product	prior	to	the	start	of	a	Sprint.	Maintaining	the	agility	of	the	Scrum	process	
requires	a	minimalist	approach	to	functional	specifications	which	is	just	enough,	and	no	less	than	just	enough.	

	

A	minimal	amount	of	documentation	for	a	product	feature	is	typically	a	few	pages	and	definitely	not	hundreds	
of	 pages.	 Just	 enough	 documentation	 so	 that	 engineers	 understand	 the	 user	 experience	 will	 suffice.	 This	
typically	means	screen	shots,	data	requirements,	workflow	from	screen	to	screen,	and	business	logic	that	must	
be	 executed.	 The	minimum	 documentation	 required	 to	 achieve	 Jacobsen’s	 overview	 of	 an	 object-oriented	
analysis	of	 the	problem	[98]	 is	an	excellent	guideline	even	though	it	may	be	beyond	the	capability	of	some	
product	management	organizations.	Fortunately,	PatientKeeper	had	well	educated	physicians	that	served	as	
Product	Owners.	While	some	of	them	had	no	formal	training	in	software	development,	they	learned	quickly	
how	 to	 elaborate	 use	 cases	 in	 a	 way	 that	 defined	 the	 user	 experience	 for	 the	 physician	 when	 using	
PatientKeeper	products.	In	addition,	these	physicians	where	action	oriented	and	strongly	resistant	to	analysis	
paralysis.	 They	 avoided	 time	 spent	 on	 excess	 documentation,	 making	 them	 excellent	 Agile	 developers	 by	
inclination.	

	

Moving	to	a	Type	B	Scrum	requires	analysis	and	design	resources	from	the	development	team	in	order	to	help	
the	Product	Owner	create	functional	specifications	and	pre-stage	the	Sprint	backlog	for	the	next	sprint.	In	the	
worst	case,	this	might	require	25%	of	the	Scrum	resources	during	a	sprint.	However,	it	avoids	the	25%	lag	time	
between	sprints.	So	in	the	worst	case	you	may	break	even	on	resource	allocation.		

	

The	real	gain	from	a	Type	B	Scrum	is	having	the	Sprint	backlog	fully	loaded	at	all	times.	A	developer	never	
wonders	what	to	do	next	because	the	queue	is	always	full.	If	the	Sprint	backlog	is	automated,	team	members	
simply	logon	at	the	beginning	of	the	day	and	self	manage	the	queue	of	work	in	front	of	them	on	a	web	page.	The	
Product	Owner	and	Scrum	Master	are	continuously	working	to	assign	items	to	a	developer’s	queue	and	the	
developer	decides	how	to	order	the	work	or,	in	some	cases,	will	reassign	it	to	a	more	appropriate	team	member.	
This	radically	increases	throughput	during	a	Sprint,	often	doubling	it.	

	

A	relevant	analogy	is	water	flow	through	a	garden	hose.	If	the	faucet	is	turned	on	and	off,	you	disrupt	flow	and	
generate	pressure	surges	in	the	line.	These	cause	side	effects	and	sometimes	structural	breakdown	in	water	
lines	 feeding	 the	 hose.	Any	 structural	 breakdown	will	 reduce	productivity	 to	 zero	 for	 an	 extended	period.	
Keeping	 the	 faucet	 turned	 on,	 even	with	 reduced	 flow,	may	 generate	more	 throughput	without	 negatively	
impacting	upstream	systems.	

	

ãJeff	Sutherland	1993-2010																																						 182	

At	the	time	of	the	PatientKeeper	first	major	round	of	venture	funding	in	2000,	I	asked	Ken	Schwaber	to	help	
get	a	Type	B	Scrum	launched	immediately.	Product	Management	owned	the	products	and	they	were	required	
to	define	the	user	experience	of	a	feature	before	it	could	enter	a	Sprint	backlog.	More	specifically,	because	of	
the	demanding	requirements	of	a	physician	user,	the	screen	shots,	the	logic,	the	workflow	between	screens,	
and	the	data	items	required	had	to	be	defined.	In	addition,	a	prototype	had	to	be	tested	with	physician	users	
and	validated	so	that	we	knew	conclusively	that	(1)	the	functionality	was	needed,	and	(2)	the	physicians	would	
use	it	when	it	was	implemented.	

	

The	 requirement	 that	 a	 Product	 Owner	 provide	 a	 functional	 specification	 sufficient	 to	 clarify	 the	 user	
experience	creates	a	positive	dynamic	tension	between	the	Product	Owners	and	the	Scrum	teams.	The	Product	
Owner	cannot	get	a	feature	into	the	queue	for	development	unless	it	is	defined	enough	for	the	Scrum	team	to	
begin	work	immediately,	either	by	building	a	technical	design	document	or	coding	directly	from	the	Product	
Management	specification	when	possible.		

	

At	the	same	time,	we	gave	the	Product	Owner	resources	in	any	Sprint	to	create	a	prototype	of	a	new	feature	
using	very	rapid	mockup	tools	that	would	create	screen	interactions	on	a	mobile	device.	In	addition,	the	Product	
Owner	had	complete	control	over	moving	items	in	and	out	of	the	Sprint	Backlog	before	and	during	the	Sprint.	
This	puts	the	Product	Owner	in	the	driver’s	seat.	This	is	effective	only	if	the	Product	Owner	knows	how	to	get	
to	the	destination,	i.e.	the	right	product	specification	is	ready	for	the	Scrum	team	to	implement	at	the	right	time.	

	

By	holding	Project	Owners	responsible	for	defining	the	user	experience	for	a	feature	prior	to	the	start	of	the	
Sprint,	a	rigorous	process	had	to	be	introduced	into	Product	Marketing	at	PatientKeeper.	The	process	made	it	
crystal	clear	that	building	new	product	began	only	when	the	Product	Manager’s	job	was	done.	At	the	same	time,	
it	was	important	to	always	have	the	development	queue	loaded.	Management	insisted	that	the	development	
team	not	have	downtime.	The	developers	self-managed	their	work	queue	and	the	work	queue	was	always	full	
or	a	company	emergency	was	declared,	similar	to	the	build	process	breaking.	The	only	way	Product	Marketing	
could	get	something	on	 the	queue	 is	was	 to	complete	 their	minimalist	 functional	specification,	 just	enough	
information	in	just	the	right	format	at	just	the	right	time.	

	

A	positive	dynamic	tension	was	created	because	the	Product	Owner	(in	this	case,	Product	Marketing)	always	
wants	more	product	in	a	release	and	tries	to	jam	features	into	the	development	queue.	Developers	always	have	
more	work	than	they	have	available	time.	In	a	Type	B	Scrum,	it	does	not	matter	whether	Product	Marketing	
introduces	new	features	 into	the	queue	 in	time	or	not,	development	productivity	 is	not	 impeded.	They	 just	
work	on	what	is	in	the	queue.	Management	is	happy	because	they	are	always	seeing	features	roll	out.	If	the	mix	
of	features	is	off,	they	hold	the	Product	Owner	responsible	when	the	required	functional	specifications	were	
not	ready.	

	

3.2 PRODUCT OWNER AS PART OF THE SCRUM TEAM
	

ãJeff	Sutherland	1993-2010																																						 183	

The	original	Japanese	view	of	a	product	development	Scrum	created	a	team	that	was	totally	responsible	for	the	
product	[1].	In	some	companies,	such	as	Individual	in	1996,	the	Product	Owner	was	at	every	Scrum	meeting.	In	
others,	like	the	original	Scrums	at	Easel	Corporation	in	1993-94,	the	Product	Owner	was	on	the	road	much	of	
the	week	and	was	always	at	the	Friday	Scrum	meetings	[18,	40].	

	

The	Product	Owner	owns	the	business	plan	for	the	product,	the	functional	specification	for	the	product,	the	
product	backlog	for	the	product,	and	prioritization	of	 the	product	backlog.	As	a	member	of	 the	Scrum	s/he	
works	side	by	side	with	the	Scrum	Master	to	 introduce	product	backlog	items	into	a	Sprint	where	they	are	
broken	down	 into	 tasks	by	 the	 team	 for	execution	as	Sprint	backlog.	At	PatientKeeper,	 the	Product	Owner	
manages	the	movement	of	tasks	in	and	out	of	the	Sprint	backlog	in	consultation	with	the	Scrum	Master.	

	

The	 linkage	 can	 be	 very	 tight	 between	 Product	 Owner	 and	 Scrum	Master	 with	 highly	 skilled	 people.	 For	
example,	at	PatientKeeper,	the	mobile	device	development	team	leader	is	the	lead	designer	and	coder	on	the	
team,	 the	 Scrum	 Master,	 and	 one	 of	 three	 Product	 Owners	 in	 the	 company,	 reporting	 to	 both	 the	 VP	 of	
Marketing	 and	 the	 Director	 of	 Engineering.	 The	 two	 other	 Product	 Owners	 are	 responsible	 for	 clinical	
applications	 and	 financial	 applications	 on	 handheld	 and	web	 devices.	 For	 clinical	 applications,	 the	 clinical	
Product	Owner	and	the	mobile	device	Product	Owner	are	joined	at	the	hip	with	the	Scrum	Masters.	Together,	
they	 are	 totally	 responsible	 for	 the	 business	 plan,	 the	 product	 specification,	 and	working	 day	 to	 day	with	
engineers	on	product	design.	

	

After	working	as	head	of	engineering	in	nine	companies,	I	have	found	that	the	best	way	to	think	about	Scrum	
responsibilities	is	to	think	of	Scrum	team	as	analogous	to	a	high	performance	car	in	a	rally	race.	The	Product	
Owner	is	the	navigator	and	the	Scrum	Master	is	the	driver.	The	team	is	the	engine,	the	chassis,	the	drive	train,	
and	 the	wheels.	The	Scrum	Master	 follows	 the	navigational	directions	of	 the	Product	Owner	precisely	 and	
drives	the	car	adroitly.	The	car	and	its	occupants	are	totally	responsible	for	winning	the	race.	At	the	end	of	
every	Sprint,	other	players	move	in	and	can	make	modifications	to	improve	the	timing	of	the	next	Sprint.	

	

New	Scrum	Masters	tend	to	view	this	analogy	as	too	prescriptive	to	a	team	that	assigns	its	own	responsibilities	
and	self-organizes.	Consider	a	football	team.	It	self-organizes	under	the	Coach	where	those	best	suited	to	roles,	
assume	positions	of	quarterback,	center,	tight	ends,	and	so	forth.	In	the	huddle,	they	may	quickly	make	minor	
refinements	to	individual	roles	and	responsibilities.	However,	when	the	ball	is	hiked,	there	is	no	discussion	of	
what	anyone	is	supposed	to	do.	To	be	successful,	they	must	know	what	they	are	to	do	and	execute	it	quickly	
and	professionally.	

	

In	some	companies	new	to	Scrum,	engineers	have	claimed	no	one	is	responsible	because	there	is	not	a	“project	
manager.”	If	you	look	at	project	managers	in	technically	driven	companies,	they	are	usually	at	the	mercy	of	the	
technical	team.	As	a	result,	product	management,	and	therefore	product	ownership,	is	weak.	This	compromises	
the	effectiveness	of	Scrum	and	prevents	a	Scrum	team	from	entering	a	hyperproductive	state	[26].	

	

ãJeff	Sutherland	1993-2010																																						 184	

In	a	well	run	Scrum,	particularly	a	Type	B	or	C	Scrum,	the	Scrum	Master	must	be	able	to	drive	the	race	car	and	
the	Product	Owner	must	be	able	to	direct	the	Scrum	Master	to	the	destination	in	the	timing	necessary	to	win	
market	share	and	attain	profitability.	Failure	at	either	of	these	tasks	leads	to	replacement	of	the	appropriate	
person.	 Success	means	 one	 or	 both	 go	 on	 to	 greater	 responsibilities.	 For	 those	who	 lead	 hyperproductive	
Scrums,	career	advancement	is	rapid	and	they	usually	wind	up	as	CTOs,	CEOs	of	their	own	companies,	or	VPs	
of	Engineering	of	larger	companies	within	a	few	years.	The	Scrum	Master	of	the	IDX	Web	Team	left	the	Scrum	
team	to	lead	the	U.K.	division	of	IDX	and	closed	over	$2B	of	new	business	within	3	years	of	leaving	the	Scrum.	
This	is	a	example	of	a	great	Scrum	Master	who	learned	how	to	own	the	business	as	well	as	the	technology,	side	
by	side	with	the	Product	Owner.	

	

3.3 TYPE B SCRUM CAN ENABLE A HYPERPRODUCTIVE TEAM
	

Giving	the	Product	Owner	control	of	the	Sprint	backlog	along	with	strong	accountability	builds	strong	product	
managers.	It	also	conditions	the	development	team	to	move	rapidly	towards	the	goal	without	analysis	paralysis.	
A	combination	of	dynamic	forces	wins	a	race	when	a	forceful	driver	is	coupled	to	a	high	performance	sports	
car	or	a	high	spirited	stallion.	The	same	phenomenon	happens	on	sports	teams	when	everyone	understands	
the	plays	and	can	execute	them	immediately	on	demand.	It	allows	the	team	to	move	up	to	a	higher	level	of	play	
where	the	basic	moves	are	on	autopilot	and	superlative	moves	are	possible.	The	first	Scrum	began	executing	
Type	B	Scrum	as	they	mastered	the	process.	They	were	able	to	enter	the	“zone”	using	this	technique,	where	
they	could	deliver	functionality	faster	than	the	customers,	the	marketing	team,	or	sales	could	absorb	product.	
The	 feeling	 of	 power	 in	 a	 development	 team	 that	 can	 deliver	 more	 product	 than	 anyone	 can	 absorb	 is	
exhilarating.	

	

Scrum	was	designed	for	this	hyperproductive	state,	to	get	ordinary	developers	to	function	as	a	champion	team.	
It	only	happens	to	about	10%	of	Scrums	and	it	only	starts	to	happen	when	the	organization	moves	to	a	Type	B	
Scrum.	The	doubling	of	throughput	from	a	team	that	is	already	very	productive	results	in	an	organizational	
breakthrough.		

	

4.	TYPE	C	SCRUM	
	

Scrum	 is	 an	 organizational	 pattern	 that	 is	 designed	 for	 an	 activity	 that	 is	 difficult	 to	 control	 because	 its	
predictability	is	limited	[26].	It	is	useful	in	any	context	where	the	activity	requires	constant	change	in	direction,	
unforeseen	interaction	with	many	participants,	and	the	need	to	add	new	tasks	as	work	unfolds.	These	factors	
were	amplified	at	PatientKeeper	when	it	received	a	$50M	round	of	venture	funding	in	2000.	

	

A	decision	was	made	to	become	a	platform	as	well	as	application	company	with	a	software	framework	and	
open	application	programming	interfaces	(APIs)	that	would	allow	integration	with	development	partners	on	
both	back	end	servers	and	the	front-end	devices.	A	web	services	platform	architecture	was	selected.	

	

ãJeff	Sutherland	1993-2010																																						 185	

	

	

	

FIGURE	26:	PATIENTKEEPER	PLATFORM	ARCHITECTURE	[99].	

	

	In	addition	to	the	server/network	architecture	based	on	Java	and	XML,	a	cross	platform	software	framework	
on	Palm	and	Pocket	PC	handheld	devices	was	implemented	in	C/C++.	This	framework	provided	open	APIs	and	
a	software	development	kit	that	allowed	third	party	vendors	and	end	users	to	tightly	integrate	their	mobile	
applications	with	other	applications	already	available	on	a	handheld	device.	

	

The	tight	integration	between	software	components	required	tight	integration	of	software	development	teams	
internally	at	PatientKeeper	and	externally	with	partners	and	offshore	developers.	This,	combined	with	time	to	
market	 pressure	 and	 rapid	 growth	 of	 new	 client	 deployments	 in	 large	 enterprises,	 each	 demanding	 new	
increments	of	functionality	along	with	30-90	day	installations,	forced	a	new	type	of	Scrum	to	be	implemented	
at	PatientKeeper.	

	

4.1 CASE STUDY CONTEXT
	

PatientKeeper	builds	a	software	platform	that	takes	information	from	many	clinical	systems	across	multiple	
hospitals	and	clinics	and	presents	it	on	an	intuitive	user	interface	to	physicians	using	handheld	devices	and	the	
web.	The	application	software	has	a	four	tier	architecture	with	four	levels	of	data	cache:	

We Make Healthcare MobileTM

Custom CDR Cerner
Meditech
…

Departmental
Systems

Interface
Engine

Internal Web Services

Adapter Adapter Adapter

Middle tier
Database

Process
Manager

Cache

PDA – Web Portal - External Web Services - Telemedicine

MER

Web Services
Bus

Architecture

Workflow/
Logistics
Management

Execution
Tier

Rules
Engine

Cache

Workflow
Engine

Cache

Logistics
Engine

Cache

Web Server

Application
Server

ãJeff	Sutherland	1993-2010																																						 186	

	

• Primary	data	source	is	a	clinical	data	repository	

• Data	is	forward	cached	in	a	mini-clinical	data	repository	

• In-memory	cache	exists	on	a	middle-ware	server	to	improve	performance	

• On	a	handheld	device,	the	data	is	stored	locally	

	

Software	and	data	must	be	consistent	across	four	tiers	at	all	times.	This	forced	PatientKeeper	to	go	to	totally	
integrated	builds	at	all	times	to	assure	that	software	in	all	four	tiers	of	the	architecture	worked	consistently.	
Software	testing	has	to	validate	that	version	of	all	architectural	layers	work	together	to	provide	consistent	data	
to	the	end	user.	

	

The	developer	team	working	on	this	product	was	split	into	a	backend	integration	team,	a	clinical	repository	
team,	a	middleware	server	team,	two	PDA	teams	(Palm	and	Pocket	PC)	and	a	Web	team.	It	was	necessary	to	
tightly	couple	these	teams	together	to	assure	that	all	software	was	interoperable	all	the	time.	

	

4.2 CASE STUDY MARKET REQUIREMENTS
	

As	 an	 early-stage,	 venture	 funded	 company,	 PatientKeeper	 had	 to	 establish	 a	 new	 product	 offering	 in	 the	
rapidly	growing	mobile/wireless	market.	Early	customers	had	to	be	implemented	as	quickly	as	possible	with	
limited	 functionality.	 Subsequent	 customers	 needed	 to	 be	 installed	 as	 soon	 as	 possible	 with	 upgraded	
functionality.	The	imperative	was	to	gain	market	share	and	achieve	market	dominance	in	a	highly	competitive	
environment.	 Speed	 to	 market	 needed	 to	 be	 used	 as	 a	 strategic	 weapon.	 Company	 viability	 and	 success	
demanded	it.	

	

The	 customer	 base	 rapidly	 evolved	 to	 5-10	 hospital	 systems	 to	 be	 installed	 each	 quarter.	 Each	 group	 of	
hospitals	 needed	more	 extensive	 functionality	 in	 a	 rapidly	 growing	 portfolio	 of	 applications	 that	 included	
business	partners	with	integrated	back	end	clinical	systems,	portal	vendors,	and	handheld	device	application	
vendors.	A	major	release	with	new	applications	was	required	on	a	quarterly	basis.		

	

Customers	consistent	of	large	hospital	systems	with	multiple	installations,	academic	research	institutions	with	
integration	 into	 home-grown	 healthcare	 research	 and	 treatment	 systems,	 and	 medium	 size	 community	
hospitals	with	 different	 requirements.	 The	 quarterly	major	 release	 had	 to	 be	 supplemented	with	monthly	
minor	releases	to	allow	multiple	new	installs	of	similar	clients	to	take	place	on	a	monthly	basis.	Finally,	bugs	
and	unanticipated	implementation	issues	that	had	to	be	resolved	to	go	live	at	new	sites	required	maintenance	
releases	every	week	or	two.	

ãJeff	Sutherland	1993-2010																																						 187	

	

4.3 CASE STUDY PROBLEM
	

The	challenge	 for	PatientKeeper	quickly	became	how	to	simultaneously	do	weekly,	monthly,	and	quarterly	
releases	of	a	system	that	was	tightly	integrated	across	four	architectural	layers	with	six	software	development	
teams	that	needed	to	be	tightly	coupled	to	assure	data	and	application	consistency	across	multiple	back	ends,	
diverse	wireless	networks,	and	multiple	 front	end	devices.	Furthermore,	each	release	had	 to	be	 tested	and	
certified	across	all	levels	of	architecture	and	applications	for	deployment.	

PatientKeeper	started	up	as	a	Scrum	company	doing	daily	meetings.	Type	B	Scrum	had	been	implemented	from	
the	beginning	with	strong	product	owners	required	to	produce	functional	specifications	before	any	product	
backlog	item	could	be	transformed	into	tasks	for	a	sprint	backlog	to	be	implemented	in	the	next	iteration.	The	
challenge	was	to	a	automate	project	management	to	monitor	thousands	of	tasks	across	dozens	of	releases	a	
year	without	disrupting	the	Scrum	process.	

4.4 CASE STUDY FORCES
Resource	constraints	forced	every	developer	to	be	focused	100%	on	building	the	system.	Scrum	Masters	and	
team	leaders	spent	the	majority	of	their	time	designing	and	coding	the	system.	Separate	project	leaders	were	
not	an	option.	

High	caliber	developers,	many	with	doctoral	degrees,	did	not	want	excessive	administrative	overhead.	They	
felt	 that	 project	 management	 could	 be	 automated	 and	 taken	 to	 a	 new	 level	 of	 efficiency.	 The	 CTO	 of	
PatientKeeper	was	asked	by	the	Scrum	teams	to	organize	a	project	management	system	that	required	less	than	
60	seconds	per	day	of	administrative	time	per	developer	and	less	than	10	minutes	per	day	for	a	Scrum	Master	
to	provide	comprehensive	reporting	to	management,	the	development	team,	and	other	areas	of	the	company.	

• Estimation	was	important.	How	were	developers	going	to	provide	valid	estimates	and	update	them	in	
less	than	sixty	seconds	a	day?	

• Planning	 and	 prioritizing	 takes	 time.	 How	 was	 this	 going	 to	 be	 accomplished	 without	 impeding	
development	throughput?	

• Architecture	was	critical	for	a	platform	company.	How	was	it	going	to	evolve	using	the	Scrum	process	
to	provide	flexibility,	scalability,	performance,	reliability,	and	maintainability?	

• Customer	requirements	in	the	form	of	use	cases	that	could	be	rapidly	transformed	into	deliverable	
code	were	essential.	Who	was	going	to	do	them	and	how	would	they	be	delivered?	

4.5 TYPE C SCRUM SOLUTION
The	Type	C	Scrum	solution	required	several	innovations	that	affected	all	parts	of	the	company.	In	effect,	the	
company	had	to	become	a	Scrum	company	with	all	activities	driven	by	an	automated	data	system	that	reflected	
release	planning	and	Sprint	execution,	as	well	as	installation	and	support	team	and	customer	feedback.	

• Team	organization	was	changed	

• Build	process	became	more	highly	automated	

• Regression	testing	automation	improved	significantly		

ãJeff	Sutherland	1993-2010																																						 188	

• All	data	collection	had	to	be	automated	

• New	tools	for	data	collection	and	reported	had	to	be	developed	

• A	MetaScrum	had	to	be	created	to	allow	company	leadership	to	manage	multiple	simultaneous	product	
releases	

• New	reports	had	to	be	developed	

• The	company	had	to	become	totally	transparent.	All	data	was	available	to	everyone	in	real	time	all	the	
time.	

4.5.1	TEAM	ORGANIZATION	

	

FIGURE	27:	OPEN	SPACE	FOR	TYPE	C	SCRUM	OF	SCRUMS	DAILY	MEETING	

	

The	 daily	 Scrum	 meeting	 quickly	 evolved	 into	 a	 daily	 Scrum	 of	 Scrum	 meetings.	 All	 members	 of	 the	
development	team	are	present	for	15	minutes	meetings.	Team	leaders	do	most	of	the	reporting:	

• The	Scrum	of	Scrums	is	a	release	team.	This	pattern	was	originally	established	at	IDX	Systems	in	1996	
[100].	The	Daily	Scaled	Scrum	meeting	is	focused	on	the	multiple	releases	to	be	delivered	inside	the	
sprint.	

• What	did	each	of	the	six	integrated	teams	complete	in	the	last	24	hours?	The	Scrum	of	Scrums	leader	
logs	what	stories	were	completed,	the	status	of	each	release	to	be	shipped	that	week,	and	sends	out	an	
email	to	the	company	immediately	following	the	Daily	Scaled	Scrum.	

• Blocks	found	in	performing	stories	in	the	last	24	hours	are	logged,	reported,	and	followed-up	after	the	
meeting.	Anything	that	can	be	solved	in	sixty	seconds	is	resolved	in	the	meeting.	

ãJeff	Sutherland	1993-2010																																						 189	

	

FIGURE	 28:	 SUMMARY	 OF	 DAILY	 EMAIL	 AFTER	 SCRUM	 OF	 SCRUMS	 MEETING	 SHOWS	 SEVEN	 RELEASES	 IN	 PROGRESS	
SIMULTANEOUSLY.	ALL	TEAMS	WORK	ON	ALL	RELEASES	AND	ALL	RELEASES	RESULT	IN	CUSTOMER	DEPLOYMENT.	

The	Daily	Scaled	Scrum	takes	place	at	the	same	time	and	place	every	day.	An	open	space	was	secured	by	the	
development	team	for	this	purpose.	Pair	programming	was	done	primarily	on	tasks	with	difficult	design	and	
coding	requirements.	Many	of	 the	developers	stayed	 in	 the	open	meeting	space	 for	 the	entire	day	working	
together	as	a	group.	Innovative	and	open	cube	space	and	a	few	offices	and	conference	rooms	are	provided	for	
those	who	need	quiet,	focused	time.	

The	rapid	pace	of	delivery	of	production	code	releases	initially	created	a	Quality	Assurance	(QA)	bottleneck.	
The	solution	was	to	assign	an	small	QA	team	to	every	release.	QA	was	expanded	to	four	small	teams	of	2-4	
people.	This	enabled	them	to	work	continuously	on	four	of	the	top	priority	releases.	In	the	Figure	above,	where	
six	releases	are	being	simultaneously	developed,	QA	is	doing	final	release	testing	and	packaging	on	four	of	them.	
QA	is	part	of	the	Scrum	of	Scrums	and	reports	on	daily	status	of	ongoing	releases.	

4.5.2	DATA	COLLECTION	
A	user	group	study	and	focus	group	analysis	was	performed	for	data	collection	for	tasks,	estimates,	and	updates	
that	would	be	used	to	automate	the	standard	Scrum	burndown	charts	[18].	A	wide	variety	of	Scrum	tracking	
tools	 had	 been	 used	 by	members	 of	 the	 team	 in	 various	 companies	 over	 a	 15	 year	 period,	 none	 of	 them	
considered	adequate.	The	60	second	requirement	for	data	entry	implied	that	a	new	application	would	not	be	
possible,	because	simply	starting	up	a	new	application	might	require	60	seconds.		

The	best	application	to	use	was	one	that	developers	had	to	use	every	day,	the	bug	tracking	system.	In	addition,	
the	speed	at	which	developers	could	do	data	entry	was	dependent	on	the	questions	they	were	asked,	and	the	
order	in	which	they	were	asked.	It	was	determined	that	only	three	questions	would	be	asked	as	developers	
could	answer	them	without	thinking,	they	could	give	a	gut	level	response:	

• What	is	the	initial	estimate	for	this	task	if	it	is	a	new	task?	

© Jeff Sutherland and ADM 2004

Typical Day in a Type C Scrum
Scrum Master email at close of Scrum daily meeting
Friday Releases 19 Nov 2004
n 245g5

– getting feedback from Cerner,
– they're trying to get micro susceptibilities data into the test system
– added MAR suppression to address issue at SOM

n 245m
– upgrade testing this morning, should release by noon

n 246
– 246g1 palm released with timeout issue fixed
– 246i - post t-giving

n 251b2
– SUNY patched released last night / installed into SUNY test system

n 251d
– Mt Sinai release, should release by noon

n 251e
– Monaco clinicals, targeting Alverno

n 3.0.1 102 open PRs, 57 verification (down from 110 on Monday!)
– beta release today

ãJeff	Sutherland	1993-2010																																						 190	

• At	this	moment,	how	much	time	have	you	spent	on	this	task?	

• At	this	moment,	what	percent	complete	is	this	task?	

These	were	the	only	additional	data	items	to	be	collected	daily	from	developers	for	tasks.	All	other	data	analysis	
and	reporting	was	to	be	automated.	

4.5.3	TOOLS	FOR	DATA	COLLECTION	AND	REPORTING	
PatientKeeper	used	the	open	source	GNATS	bug	tracking	system	[101].	Since	developers	needed	to	use	the	bug	
tracking	system	daily,	there	was	no	additional	time	overhead	for	opening	the	application	to	enter	task	data.	

GNU	GNATS	 is	a	set	of	 tools	 for	 tracking	bugs	reported	by	users	 to	a	central	 site.	 It	allows	problem	report	
management	 and	 communication	 with	 users	 via	 various	 means.	 GNATS	 stores	 all	 the	 information	 about	
problem	reports	in	its	databases	and	provides	tools	for	querying,	editing,	and	maintenance	of	the	databases.	

Thanks	to	its	architecture,	GNATS	is	not	bound	to	a	single	user	interface	–	it	can	be	used	via	command	line,	e-
mail,	Emacs,	or	a	network	daemon,	but	is	usually	used	with	a	Web	interface.	Together	with	the	fact	that	all	
GNATS	databases	 and	 configuration	 can	be	 stored	 in	 plain	 text	 files,	 it	 allows	 easy	use	 and	provides	 good	
flexibility.	Basically,	if	the	GNATS	tools	do	not	provide	everything	you	need,	you	can	add	your	own	additional	
utilities	using	standard	GNU	tools.	http://www.gnu.org/software/gnats/	

A	PERL	expert	on	the	development	team	was	assigned	to	build	utilities	around	GNATS	to	support	Scrum.	These	
were	addition	of	required	data	 items,	new	queries,	minor	changes	to	the	user	 interface,	and	automated	file	
dumps	for	management	reporting	via	Excel.	Sample	data	items	maintained	by	GNATS	are	shown	in	Figure	3	
below.	

ãJeff	Sutherland	1993-2010																																						 191	

	

FIGURE	29:	TYPICAL	DATA	ITEMS	IN	GNATS	FOR	PROBLEM	REPORTING	BY	EMAIL	OR	THE	WEB.	

It	 was	 decided	 that	 sprint	 tasks	 would	 be	 treated	 like	 problem	 reports.	 This	 minimized	 new	 data	 entry	
requirements	and	allow	tasks	and	bugs	to	be	packaged	together	seamlessly	for	a	release.	Only	three	data	items	
were	added	to	GNATS	for	developer	entry:	

• Initial	estimate	

• Days	invested	

• %	complete	

The	initial	estimate	was	fixed	at	initial	entry	and	could	never	be	changed	in	order	to	allow	for	accurate	historical	
reporting	 of	 estimates	 versus	 actual	 time	 to	 complete	 tasks.	 Two	 additional	 data	 items	 were	 added	 for	
reporting	purposes.	These	are	automatically	calculated	from	the	three	items	above.	

• Days	remaining	

• Actual	time	to	complete	

	

ãJeff	Sutherland	1993-2010																																						 192	

If	the	initial	estimate	is	2	days,	for	example,	and	no	work	has	been	accomplished,	the	days	remaining	are	2	days.	
If	a	developer	has	invested	1	day	and	states	that	it	is	25%	complete,	GNATS	calculated	the	days	remaining	as	3	
days.	Initial	estimates	are	automatically	expanded	based	on	real	time	data.	

FIGURE	 30:	 DEVELOPER	WORKSTATION	 TASK	 LISTING	 FOR	 ASSIGNED	 TASKS	 FOR	 A	 SPRINT.	 RIGHT	 CLICK	 ON	 THE	MOUSE	
GENERATES	DROP	DOWN	LIST	THAT	ALLOWS	ANY	DATA	ITEM	TO	BE	UPDATED	ALMOST	INSTANTANEOUSLY.	

The	cumulative	time	remaining	for	a	release	can	be	obtained	in	real	time	by	anyone	in	the	company	with	access	
to	GNATS.	At	PatientKeeper,	that	is	every	person	in	the	company.	The	days	remaining	for	all	tasks	assigned	to	
a	release	are	totaled	to	calculate	cumulative	backlog,	the	number	charted	on	a	Scrum	burndown	chart.	Because	
there	are	thousands	of	tasks	in	the	system	and	any	tasked	that	is	touched	is	updated	every	day	it	is	touched,	
the	phenomenon	of	statistical	regression	towards	the	mean	[102]	makes	the	summary	data	on	cumulative	time	
to	release	very	accurate.	It	achieves	the	holy	grail	of	accounting	software,	microcosting	of	every	activity	in	a	
company	[103].	

4.5.4	PRODUCT	DEVELOPMENT	PROCESS	REFINEMENTS	
Product	Management	serves	as	the	Product	Owner	at	PatientKeeper	and	must	provide	functional	specifications	
for	features	that	sufficiently	describe	the	user	experience	so	that	developers	can	begin	design	and	coding.	This	
typical	means	screens	shots,	workflow	between	screens,	business	logic,	and	data	items	required.	A	working	
demo	 is	 normally	 prototyped	 and	 approved	by	 a	 physician	 user	 group	before	 a	 feature	 can	 enter	 a	 sprint	
backlog.	

The	Product	Owner	controls	the	GNATS	entries	for	a	release	and	the	bug	flow	into	the	system.	Bugs	initially	go	
into	a	triage	category	and	the	Product	Owner	assigns	them	to	a	release	based	on	priority,	customer	requests,	
implementation	 issues,	and	so	 forth.	Features	are	 initially	placed	 into	GNATS	as	placeholders	assigned	to	a	
release.	Developers	can	pick	them	up	and	translate	them	into	tasks	specific	to	a	sprint.	

ãJeff	Sutherland	1993-2010																																						 193	

	

Figure	7	shows	a	burndown	chart	generated	by	GNATS	for	PatientKeeper	Release	6.	It	shows	product	backlog	
accumulating	as	placeholders	until	the	Sprint	started	on	12	June	2002.	At	that	time,	developers	began	breaking	
down	product	features	into	estimated	tasks	for	the	next	sprint.	This	drove	the	backlog	up	as	new	tasks	are	
discovered	that	were	unanticipated	in	original	product	feature	estimates.		

On	26	June	2002,	the	PatientKeeper	CEO	decided	to	commit	the	company	to	a	major	user	 interface	rework	
during	Release	6.	When	the	Product	Owner	entered	over	80	new	tasks	into	the	release	the	burndown	chart	
shot	up	quickly	in	a	two	day	period.	This	was	visible	immediately	to	the	entire	company	because	burndown	
charts	were	mailed	out	to	the	company	on	a	daily	basis.	

This	caused	a	lot	of	consternation	because	there	was	no	way	that	this	iteration	would	be	a	standard	30	day	
Sprint.	PatientKeeper	has	a	weekly	MetaScrum	[100]	meeting	which	includes	leaders	from	all	departments	in	
the	company	where	release	priorities	and	features	are	reexamined	on	a	weekly	basis.	It	was	determined	that	
the	 value	 to	 the	 company	 of	 refining	 the	 user	 interface	 of	 the	 product	 was	 very	 high	 in	 a	 competitive	
environment	and	the	sprint	would	be	extended	to	24	August	based	on	the	Scrum	burndown	chart.	This	would	
require	the	development	team	to	have	perfect	development	days	from	the	beginning	of	July	through	the	end	of	
August.	

An	ideal	developer	day	is	the	amount	of	work	that	can	be	accomplished	if	a	developer	works	uninterruptedly	
for	 a	 normal	 work	 day.	 Most	 teams	 preplan	 to	 get	 40-60%	 of	 a	 development	 day	 due	 to	 meetings	 and	
extraneous	interruptions	for	team	members.	Getting		180	developer	days	with	an	8	person	team	in	42	calendar	
days	without	overtime	was	not	going	to	be	easy.	The	policy	at	PatientKeeper	was	to	sustainable	development	
using	a	normal	work	week	with	night	and	weekend	activity	required	only	when	rare	emergencies	occurred,	i.e.	
production	customers	hard	down	in	the	field.	

PatientKeeper	 had	 the	 advantage	 of	 smooth	 running	 Scrums	 with	 few	 interruptions	 other	 than	 release	
priorities.	As	a	result,	their	normal	velocity	or	number	of	days	work	accomplished	per	day	per	developer	ran	
better	than	60%.	Years	of	historical	data	also	showed	they	finished	their	tasks	 in	an	average	of	85%	of	the	
original	estimate.	This	often	did	not	show	up	in	calendar	days	due	to	release	priority	conflicts.	However	the	
leadership	 team	 realized	 that	 slippage	 was	 normally	 due	 to	 management	 prioritization	 problems,	 not	
developer	slippage,	and	GNATS	has	mountains	of	data	to	prove	it.	

The	solution	was	to	focus	the	entire	team	on	one	release	and	over	a	42	calendar	day	period,	or	30	business	
days,	 the	developers	delivered	180	days	of	work	for	a	velocity	of	2	days	of	work	for	every	3	business	days	
invested	 or	 66%	 of	 the	 ideal.	 This	 was	 planned	 in	 advance,	 the	 MetaScrum	 leadership	 repositioned	 all	
customers	at	the	beginning	of	July,	and	overtime	was	not	required.	

	

ãJeff	Sutherland	1993-2010																																						 194	

	

FIGURE	31:	SCRUM	BURNDOWN	CHART	AUTOGENERATED	BY	GNATS.	PRODUCT	MANAGEMENT	WAS	ENTERING	PLACEHOLDERS	
FROM	 PRODUCT	 BACKLOG	 UNTIL	 6/12/2002	WHEN	 THE	 SPRINT	 STARTED.	 IT	 EXTENDED	 BEYOND	 30	 DAYS	 FOR	 REASONS	
DESCRIBED	ELSEWHERE.	THE	PAIN	OF	THIS	SCRUM	RECONVINCED	EVERYONE	THAT	30	DAYS	IS	THE	MAXIMUM	SCRUM	LENGTH.	

The	 capability	 of	 total	 transparency	where	 all	 data	 is	 available	 to	 everyone	 extends	 the	 concept	 of	 global	
visibility	 during	 a	 Scrum	 to	 the	 entire	 company.	 This	 allows	 all	 parts	 of	 the	 company	 to	 replan	 activities	
routinely.	 In	 the	 case	 of	 PatientKeeper,	 new	 Sprints	 can	 be	 started,	 changed,	 or	 destroyed	 in	 the	 weekly	
MetaScrum	without	disrupting	the	focus	of	the	Scrum	teams.		

4.5.5	PROJECT	REPORTING	
The	GNATS	reporting	system	was	refined	to	allow	sophisticated	management	reporting.	Two	of	the	most	useful	
examples	are	(1)	tracking	the	quality	of	a	product	portfolio	and	(2)	automated	generation	of	Gantt	charts	for	
MetaScrum	planning.	

4.5.5.1	Tracking	Quality	of	a	Product	Portfolio	

A	useful	measure	of	product	quality,	code	stability,	and	forward	progress	is	a	chart	that	shows	arrival	of	new	
development	tasks,	completion	of	development	tasks	that	change	status	to	verification	(where	they	become	the	
responsibility	of	the	QA	team),	and	closing	of	tasks	when	testing	by	the	QA	team	is	complete.	The	cumulative	
number	of	outstanding	defects	has	been	divided	by	10	in	Figure	8	to	allow	charting	of	the	cumulative	total	in	
the	same	range	and	daily	defect	arrival.	

	

ãJeff	Sutherland	1993-2010																																						 195	

	

FIGURE	32:	DAILY	ARRIVAL	OF	DEFECTS	ALONG	WITH	CUMULATIVE	DEFECT	COUNT.	COMPANY	OBJECTIVE	IS	TO	DRIVE	TOTAL	
BUG	COUNT	ACROSS	A	DEPLOYED	PORTFOLIO	OF	RELEASES	BELOW	100.	 THIS	 IS	 CHALLENGING	AS	THERE	ARE	ABOUT	100	
HOSPITALS	DEPLOYED	ON	THE	2.4.*	RELEASES.	

4.5.5.2	Gantt	Chart	for	MetaScrum	Planning	

Gantt	charts	are	useful	for	planning	purposes.	However,	they	are	poor	for	tracking	software	projects	because	
dependencies	change	on	a	daily	basis.	A	full	time	developer	can	be	absorbed	keeping	Microsoft	Project	up	to	
date	for	a	single	Scrum	team	and	Scrum	was	designed	to	eliminate	this	wasteful	activity.	For	the	last	six	years,	
PatientKeeper	has	evaluated	whether	to	have	any	project	management	other	than	Product	Owners	and	Scrum	
Masters.	The	decision	has	always	been	that	they	are	unnecessary	waste.	

A	MetaScrum	can	find	a	Gantt	chart	useful,	but	only	if	it	is	machine	generated.	A	human	generated	Gantt	chart	
is	inaccurate	in	the	beginning	and	completely	outdated	within	a	week	in	a	fast-paced	company.	An	effective	
Gantt	chart	can	be	calculated	in	real	time	based	on	data	capture	in	the	reporting	system.	

	

© Jeff Sutherland and ADM 2004

Defects Open/Closed by Day:
Managing Quality of Product Portfolio

ãJeff	Sutherland	1993-2010																																						 196	

	

FIGURE	33:	DYNAMICALLY	GENERATED	GANTT	CHART.	END	POINTS	REFLECT	ANTICIPATED	RELEASE	DATE	IN	DAYS	FROM	DAY	
OF	GENERATION.	

Dynamic	Gantt	charts	can	be	generated	by	staff	members	for	a	small	team,	or	by	teams	for	a	company.	The	chart	
above	shows	two	releases	broken	into	development	tasks	and	QA	tasks.	The	X	axis	is	days	from	generation	day.	
The	Y	axis	is	staff	members	by	name	showing	assignments	for	the	team.	

The	result	of	an	automatically	generated	Gantt	chart	is	a	surprise	to	traditional	managers.	It	will	show	most	
individuals	are	loaded	only	1-3	days	out.	They	will	choose	their	next	task	when	they	complete	their	current	
task.	Key	people	like	the	lead	architect	or	QA	manager	will	have	tasks	queued	up	to	be	passed	off	to	whoever	is	
ready	to	take	them	“just	in	time.”	

When	PatientKeeper	managers	were	asked	 if	 they	wanted	 to	manage	 resources	 to	allow	an	autogenerated	
Gantt	charge	to	show	release	dates	they	were	counting	on,	they	immediately	declined,	noting	that	disruption	
of	 a	 self-organizing	 system	would	 radically	 cut	 the	 velocity	 of	 the	 team	 and	 create	 unnecessary	work	 for	
managers.	They	gave	up	the	notion	of	trying	to	use	a	Gantt	chart	to	plan	releases	and	went	back	to	the	Product	
Owner’s	roadmap	for	release	planning.	This	is	a	milestone	based	timeline	that	shows	the	Product	Owner’s	best	
estimate	of	release	dates	with	specified	highest	values	features	based	on	known	team	velocities	and	project	
dependencies.	

4.6 TYPE C SCRUM RATIONALE
As	noted	in	our	Pattern	Languages	of	Program	Design	paper	[26],	“it	is	very	easy	to	over-	or	under-estimate,	
which	leads	either	to	idle	developer	time	or	to	delays	in	the	completion	of	an	assignment.	Therefore,	it	is	better	
to	frequently	sample	the	status	of	small	assignments.		Processes	with	a	high	degree	of	unpredictability	cannot	
use	traditional	project	planning	techniques	such	as	Gantt	or	PERT	charts	only,	because	the	rate	of	change	of	
what	is	being	analyzed,	accomplished,	or	created	is	too	high.		Instead,	constant	reprioritization	of	tasks	offers	
an	 adaptive	mechanism	 that	 provides	 sampling	 of	 systemic	 knowledge	 over	 short	 periods	 of	 time.		 Scrum	
meetings	help	also	in	the	creation	of	an	anticipating	culture	[104]	because	they	encourage	productive	values:	

© Jeff Sutherland and ADM 2004

Dynamic GANTT Chart:
Managing Mult iple Releases

0 5 10 15 20 25 30 35 40

abonventre

ctashjian

dcohan

dkoulomzin

gaspeslagh

jcarp

legli

rkozak

sally

sanj

svakil

D
ay

s

Release 2.5.1c & 3.0

R2.5.1c
Ver 2.5.1c
R3.0
Ver 3.0

ãJeff	Sutherland	1993-2010																																						 197	

	

• They	increase	the	overall	sense	of	urgency.	

• They	promote	the	sharing	of	knowledge.	

• They	encourage	dense	communications.	

• They	facilitate	honesty	among	developers	since	everyone	has	to	give	a	daily	status.	

In	a	Type	C	Scrum,	the	urgency,	sharing,	communications,	and	honesty	behaviors	are	extended	company	wide.	
“From	 the	 Complexity	 Theory	 perspective	 [105,	 106],	 Scrum	 allows	 flocking	 by	 forcing	 a	 faster	 agent	
interaction,	therefore	accelerating	the	process	of	self-organization	because	it	shifts	resources	opportunistically	
through	the	daily	Scrum	meetings.[26]”	When	extending	company	wide,	the	entire	company	can	self-organize	
on	a	weekly	basis.	The	following	behaviors	become	commonplace:	

• There	 is	 never	 an	 unexpected	 late	 release	 as	 problems	 are	 seen	 long	 before	 the	 release	 date.	 The	
company	self-organizes	around	the	issues	raised	in	the	MetaScrum.	

• Changes	in	customer	requirements	are	reflected	immediately	in	product	backlog	and	relevant	Sprint	
backlog.	Decisions	are	made	to	reorganize	on	a	weekly	basis	in	the	MetaScrum.	

• Company	 imperatives	 and	management	 changes	 that	 affect	 product	 backlog	 are	made	 only	 in	 the	
MetaScrum.	This	eliminates	most	politics,	lobbying,	and	closed	door	meetings.	

• Customer	 impact	and	schedule	 impacts	are	deal	with	 immediately	 in	 the	MetaScrum	at	 the	time	of	
decision.	The	CEO,	sales	staff,	and	account	management	walk	out	of	the	meeting	with	assigned	tasks	to	
deal	with	customers	affected	by	decisions.	

4.7 TYPE C SCRUM RESULTING CONTEXT
The	move	to	a	Type	C	Scrum	to	improve	development	productivity	had	far	reaching	effects	on	the	company	
making	it	more	flexible,	more	decisive,	more	adaptable,	and	a	better	place	to	work.	The	same	effects	commonly	
seen	on	Scrum	teams	were	reflected	throughout	the	company.	

Project	management	was	totally	automated.	The	result	is	paperless	project	management	and	reporting,	largely	
without	human	intervention.	Scrum	execution	has	become	exceptionally	efficient	and	the	automated	tracking	
system	has	become	mission	critical.	Burndown	charts	have	evolved	to	frame	the	entire	status	of	a	project	on	
one	chart.	The	chart	below	instantaneously	reflects	project	state	for	Release	3.20	at	a	glance	to	those	familiar	
with	the	data.	With	all	tasks	

entered	 at	 16	 hours	 or	 less	 and	 bug	 fixes	 typically	 less	 than	 a	 day,	 the	 aggregate	 number	 of	 tasks	 can	 be	
monitored	and	downward	velocity	is	highly	predictive	of	delivery	date.	Information	is	presented	as	follows:			

• Dark	Blue	Diamond	–	Release	3.20	current	open	–	cumulative	work	remaining	

• Yellow	Triangle	–	Release	3.20	daily	closed	-	items	closed	by	QA	each	day	

• Purple	Star	–	Release	3.20	total	closed	-	cumulative	closed	(on	scale	at	right)	

• Pink	Square	–	Release	3.20	current	verification	-	current	total	in	verification	(items	QA	needs	to	test	
and	close)	

ãJeff	Sutherland	1993-2010																																						 198	

• Light	Blue	X	–	Release	3.20	daily	open	–	new	tasks	opened	per	day	

	

Figure	34:	Comprehensive	Burndown	Chart	showing	daily	task	inflow/outflow	and	cumulative	project	
churn	[15].	

The	cumulative	closed	(right	scale)	is	much	higher	than	the	starting	number	of	about	150	tasks	(left	scale).	The	
reason	for	this	is	that	the	Sprint	Backlog	minor	changes	are	constantly	coming	into	the	Sprint	Backlog	for	the	
following	reasons:	

• QA	is	finding	bugs,	often	generating	multiple	tasks	that	can	be	closed	with	one	developer	fix.		

• Product	development	is	adding	tasks	primarily	because	of	customers	moving	in	and	out	of	the	mix	for	
go-live	at	end	of	Sprint	(this	is	not	allowed	in	Type	A	and	B	Sprints).	

• Development	is	discovering	new	tasks	as	they	flesh	out	technical	design.		

The	cumulative	closed	tasks	is	an	indicator	of	the	churn	on	a	project	and	the	reason	why	Brooks	[5]	notes	that	
development	always	take	three	times	as	long	as	initial	estimates.	Automated	reporting	and	rapid	turnaround	
can	radically	reduce	time	to	complete	new	tasks.	Note	the	strong	downward	velocity	on	the	Burndown	Chart	
despite	project	churn.	PatientKeeper	was	able	to	move	quickly	into	the	marketplace	and	achieve	leadership	in	
the	 healthcare	 mobile/wireless	 market	 [11]	 through	 delivering	 over	 45	 production	 releases	 of	 the	
PatientKeeper	Platform	in	2005	for	large	enterprises	such	as	Partners	Healthcare	in	Boston,	Johns	Hopkins	in	

© Jeff Sutherland 1993-2007

Comprehensive Burndown Chart

320 PR Burndown

0
20
40
60
80

100
120
140
160
180

5/9
/20

05

5/1
6/2

005

5/2
3/2

005

5/3
0/2

005
6/6

/20
05

6/1
3/2

005

date

PR
 c

ou
nt

0
50
100
150
200
250
300
350
400
450

to
ta

l c
lo

se
d

320 current open 320 current verification
320 daily 'closed' 320 daily open
320 total 'closed'

ãJeff	Sutherland	1993-2010																																						 199	

Baltimore,	and	Duke	University	Health	System	in	Durham.	Gartner	Group	put	PatientKeeper	as	the	leader	in	
their	“magic	quadrant”	for	the	industry	segment.	Type	C	Scrum	was	a	key	contributor	to	this	success.	

	

FIGURE	35:	GARTNER	GROUP	“MAGIC	QUADRANT”	FOR	HEALTHCARE	MOBILE	APPLICATIONS	[107].	

5.	CONCLUSIONS	
Moving	to	a	Type	C	Scrum	is	not	for	the	faint	of	heart.	It	requires	Scrum	teams	that	can	execute	a	standard	
sprint	flawlessly,	an	automated	data	collection	and	reporting	system	that	is	easy	to	implement	and	update,	and	
a	corporate	culture	that	embraces	change.	Going	to	a	Type	C	Scrum	will	transform	a	company	in	an	organization	
where	Scrum	becomes	mission	critical	for	the	entire	organization,	not	just	software	development.			

Gregor	Rothfuss	provided	an	excellent	summary	when	seeing	the	reporting	mechanisms	for	a	Type	C	Scrum	
for	the	first	time	[89]:	

i	was	a	guest	at	the	Agile	roundtable	near	Boston	last	night.	The	event	drew	a	crowd	of	veteran	software	engineers,	
i	was	the	youngest	in	attendance	by	about	20	years.	

ken	schwaber	outlined	his	and	jeff	sutherland's	Scrum	approach,	which	struck	me	as	interesting	and	worthwhile	
to	follow	up	on.	

Leaders Challengers

Niche Players Visionaries

PatientKeeper

Allscripts
Healthcare
Solutions

Epic
Systems

McKesson

MDanywhere
Technologies

MedAptus

ePhysician

MercuryMD
MDeverywhere

ePocrates

Medical Information
Technology

(MEDITECH)
Siemens

Eclipsys Technologies

QuadraMed Ability
to

Execute

Completeness of Vision

ãJeff	Sutherland	1993-2010																																						 200	

jeff	sutherland,	CTO	of	patientkeeper,	demonstrated	how	he	manages	his	teams	of	developers	with	GNATS.	 jeff	
figured	 that	developers	 loathe	 red	 tape,	and	had	 the	goal	 to	 limit	 the	effort	 required	 to	1	minute	per	day	 for	
developers,	and	10	minutes	per	day	for	project	managers.	

and	 he	 was	 not	 using	 gantt	 charts	 to	 achieve	 this	 either.	 calling	 gantt	 charts	 totally	 useless	 for	 project	
management	beyond	giving	warm	fuzzies	to	the	client,	he	explained	how	he	leveraged	their	bug	tracker	to	double	
as	a	means	to	keep	track	of	effort.	

each	morning,	developers	review	their	tasks	and	update	the	work	remaining	estimates	which	have	a	granularity	
of	one	day.	the	project	managers,	in	turn,	analyze	the	reports	that	GNATS	automatically	creates.	reports	such	as	
number	of	new	tasks	vs.	closed	tasks,	total	work	remaining	and	other	metrics	that	can	be	derived	from	the	task	
data.	

tasks	are	the	cornerstone	here.	jeff	was	able	to	demonstrate	to	the	business	side	that	the	high	level	business	goals	
were	off	by	100%	with	their	effort	estimates,	while	the	low-level	tasks	achieved	an	accuracy	of	10%	on	average.	
this	led	to	enthusiasm	from	all	parties	to	drill	down	on	any	project	and	get	to	the	task	level	ASAP	to	get	meaningful	
estimates.	and,	like	psychohistory,	project	management	is	inherently	stochastic.	

‘nowhere	to	run,	nowhere	to	hide’	

the	level	of	transparency	of	this	system	is	unprecedented.	with	everyone	in	the	company	able	to	see	on	a	daily	basis	
how	much	work	was	remaining	and	what	the	roadblocks	were,	the	initial	fears	that	developers	would	be	pounded	
on	 by	management	 turned	 out	 to	 be	 unfounded.	 instead,	 the	 transparency	 enables	 everyone	 to	 do	 real-time	
adjustments	and	to	detect	problems	early,	which	has	taken	a	lot	of	politics	and	second-guessing	out	of	the	equation.	

when	analyzing	a	project,	jeff	focuses	on	burn	down,	the	part	of	a	release	where	open	tasks	are	relentlessly	driven	
down	to	0	by	a	joint	effort	of	developers	and	business	people.	the	corresponding	graphic	(roughly	a	bell	curve)	
illustrates	the	importance	of	the	burn	down	nicely,	adding	weight	to	jeff's	assertion	that	burn	down	is	the	only	
thing	that	matters	to	get	a	release	done	in	time.	

“which	prompted	me	to	ask	for	advice	on	how	to	drive	an	open	source	release	as	a	release	manager.	people	are	
not	exactly	required	to	do	your	bidding,	but	metrics	may	help	there	too.	collect	these	useful	data	points,	as	the	
bugzilla-bitkeeper	 integration	 is	 doing,	 and	 let	 them	 speak	 for	 themselves.	 peer	 pressure	 and	 pride	 in	
workmanship	will	take	over	from	there.	that's	the	idea	anyway…”	

Key	features	mentioned	in	the	Rothfuss	report	are:	

• Unprecedented	transparency	

• Companywide	visibility	

• Metrics	driven	decision	making	

• Peer	pressure	and	pride	in	workmanship	driving	productivity	

Type	C	Scrum	increases	speed	of	development,	aligns	individual		and	corporate	objectives,	creates	a	culture	
driven	by	performance,	supports	shareholder	value	creation,	achieves	stable	and	consistent	communication	of	
performance	at	all	levels,	and	enhances	individual	development	and	quality	of	life.	

	 	

ãJeff	Sutherland	1993-2010																																						 201	

CHAPTER	7:	CASE	STUDIES	
One	of	the	most	interesting	things	about	Scrum	is	the	unique	case	studies	that	have	been	published	at	IEEE	
conferences.	 Scrum	 is	 used	 by	 some	 of	 the	most	 productive,	 high	maturity,	 and	most	 profitable	 software	
development	teams	in	the	world.	It	powers:	

• The	most	productive	large	development	project	(over	a	million	lines	of	code)	ever	documented.	

• The	most	unique	CMMI	Level	5	implementation	on	the	planet.	

• The	most	profitable	software	development	project	in	the	history	of	software	development.	

The	SirsiDynix	project	reimplemented	a	large	system	that	supported	over	12,500	libraries	in	42	countries	with	
120	million	users.	In	the	middle	of	the	project,	the	development	team	was	doubled	in	size	with	teams	from	
StarSoft	Development	Labs	 in	St.	Petersburg,	Russia.	Their	velocity	more	than	doubled	the	day	the	Russian	
teams	came	online.	The	lines	of	code	delivered	per	developer	was	as	high	as	the	best	small	team	collocated	
Scrum	projects.	

Systematic	Software	Engineering	in	Aarhus,	Denmark,	spent	seven	years	and	over	100,000	person	hours	of	
process	engineers	to	achieve	CMMI	Level	5	certification,	reduce	rework	by	80%,	and	improve	productivity	by	
31%.		Within	six	months	after	a	Scrum	Certification	course	they	had	reduced	planning	time	by	80%,	defects	by	
40%,	total	cost	of	a	project	by	50%	while	simultaneously	enhancing	customer	and	employee	satisfaction.	They	
now	bid	Scrum	projects	at	50%	of	the	cost	of	waterfall	projects.	

One	of	the	most	interesting	Scrum	implementations	is	Google’s	AdWords	implementations.	This	application	
drives	the	majority	of	Google	revenue	growth	and	helps	create	market	capitalization	that	is	higher	than	Intel	
and	just	below	that	of	Chevron,	the	most	profitable	oil	company	in	the	world.	The	AdWords	project,	powered	
by	Scrum,	has	distributed	teams	in	five	 locations	and	interfaces	with	virtually	all	Google	products	on	every	
release.	As	a	result,	the	Google	project	manager	needed	to	insert	more	structure	than	is	usually	associated	with	
Google	 teams.	 His	 seamless	 introduction	 of	 Scrum	 based	 on	 resolving	 the	 highest	 priority	 impediments	
observed	by	the	teams	resulted	in	an	implementation	that	no	longer	needed	a	Scrum	Master	to	function.	The	
teams	ran	by	themselves.	

	 	

ãJeff	Sutherland	1993-2010																																						 202	

	

SSH!	WE	ARE	ADDING	A	PROCESS…	(AT	GOOGLE)	
Mark	Striebeck,	Google	Inc.	

mark.striebeck@gmail.com	

	

Abstract	

Google	is	very	successful	in	maintaining	its	startup	culture	which	is	very	open	and	engineering-centric.	Project	
teams	don’t	have	a	project	manager,	but	organize	themselves	and	communicate	directly	with	all	stakeholders.	
Most	 feature	decisions	are	made	by	 the	engineering	 teams	 themselves.	As	well	as	 this	works	 for	products	 like	
search,	 gmail	…	 it	 creates	 issues	 for	 the	AdWords	 frontend	 (AWFE)	application.	AWFE	 is	much	more	product	
management	and	release	date	driven	then	other	Google	applications.	This	presentation	discusses	how	we	carefully	
introduced	agile	practices	to	coordinate	the	AWFE	development	teams	and	made	the	process	more	efficient	and	
predictable.	

1.	INTRODUCTION	
Google	is	known	for	its	startup	culture	and	its	efforts	to	maintain	it.	In	terms	of	the	Agile	Manifesto	Google	is	
almost	entirely	on	the	“left	hand	side”	(with	the	exception	of	“Working	Software”).	Traditionally,	project	teams	
do	not	have	a	project	manager,	but	organize	themselves	and	communicate	directly	with	all	stakeholders.	Even	
now,	where	Google	has	more	then	6000	employees	in	numerous	offices	around	the	world,	Google	is	still	very	
engineering	driven.	Many	new	product	ideas	come	from	the	20%	projects5	of	its	employees.		

The	overall	mindset	at	Google	is	to	have	as	little	as	possible	standard	processes	as	possible.	The	reason	is	that	
the	individual	engineering	teams	will	know	best	what	is	right	for	them.	Upper	management	on	the	other	side	
has	trust	in	its	engineers	that	they	would	not	abuse	this	autonomy	but	do	what	is	best	for	their	project	and	the	
company.	

AdWords	is	different.	Being	a	B2B	application,	means	that	it	needs	much	more	business	focus,	sales	material	
has	 to	be	updated,	 support	has	 to	be	 trained,	 and	 external	 communication	 about	major	 features	has	 to	be	
prepared	(forums,	blogs	and	emails).		

Therefore	AdWords	had	a	few	standards:	

• From	the	initial	product	idea,	the	product	manager	together	with	a	UI	designer	and	usability	specialists	
creates	 almost	 final	 UI	 mockups.	 These	 mockups	 are	 used	 for	 a	 final	 project	 review	 by	 senior	
management	and	then	given	to	engineering	for	implementation.	

• During	the	whole	project	lifecycle,	the	product	manager	holds	weekly	meetings	with	all	stakeholders	
(engineering,	QA,	UI,	 support,	marketing).	These	 core	 team	meetings	 are	 the	main	 communication	

	

5	Every	Google	employee	is	encouraged	to	spend	20%	of	his/her	time	on	a	personal	project.	This	project	should	not	be	too	closely	related	
to	the	employees’	actual	work.	

	

ãJeff	Sutherland	1993-2021	 	 203	

	

	

	

channel.	All	major	product	decisions	are	made	or	at	least	discussed	here.	Lots	of	change	requests	come	
from	these	core	team	meetings	during	the	project	lifetime.	

• Although,	the	core	team	sets	initial	release	dates	(with	input	from	engineering),	the	final	release	date	
is	determined	by	engineering	progress	and	quality	of	the	code.	Given	the	scale	of	AdWords	(number	of	
users,	 business	 relevance,	 load,	 infrastructure);	 a	 small	 bug	 can	 have	 very	 severe	 consequences.	
Therefore	features	are	rather	delayed	then	released	with	insufficient	or	even	unknown	quality.	

• This	 level	 of	 process	 worked	 well	 in	 the	 beginnings	 of	 AdWords.	 But	 the	 AdWords	 product	
development	outgrew	this	ultra	lightweight	process		

• The	application	code	consists	of	more	then	500KLOC	

The	engineering	team	is	distributed	in	5	offices	worldwide	–	there	are	constantly	15-20	major	projects	ongoing	
plus	maintenance	and	small	improvements.	

And	the	AdWords	application	and	development	team	is	still	growing…	

The	unpredictability	of	launch	dates	caused	more	and	more	concern.	Nobody	wanted	to	lower	the	high	quality	
standards.	But	the	initial	release	dates	needed	to	be	more	reliable	and	delays	should	at	least	be	known	and	
communicated	much	earlier.		

Because	of	its	size	and	complexity	AdWords	has	fairly	large	management	team	(for	Google	standards).	In	order	
to	be	effective	the	management	team	needed	much	more	visibility	into	the	projects	and	their	status.	

Finally,	the	rate	of	change	is	very	high	in	AdWords.	Teams	who	work	on	a	project	for	a	few	months	might	find	
that	they	have	a	lot	of	cleanup	to	do	before	they	can	finally	launch.	Not	so	much	because	of	code	integration	
issues	(the	AdWords	team	runs	a	fairly	comprehensive	continuous	integration	suite)	but	because	of	feature	
changes.	Often,	projects	that	run	for	a	long	time	have	to	play	catch-up	with	all	the	feature	changes	before	they	
release.	In	a	few	cases	this	lead	to	significant	delays.	

2.	FIRST	AGILE	ATTEMPTS	
Trying	to	introduce	a	process	in	a	start-up	environment	such	as	Google	often	meets	resistance.	Because	of	the	
googley	way	of	developing	software,	many	engineers	simply	do	not	believe	that	any	formal	process	can	have	a	
benefit	but	will	only	slow	them	down.		

When	I	took	on	my	first	projects	at	Google	I	was	just	a	few	months	with	the	company.	The	engineers	did	not	
know	me	at	all.	But	it	was	interesting	to	see	how	the	Google	culture	helped	me	here:	A	big	part	of	Google	culture	
is	 trust.	 This	 goes	 through	 the	whole	 organization.	 And	 although	 I	 was	 new	 to	 Google	 and	 AdWords,	 the	
engineers	and	PMs	trusted	me	that	I	would	do	the	right	things.	Or	better:	they	trusted	the	people	who	hired	me	
that	I	am	someone	who	would	do	a	good	job.	

So,	my	strategy	was	to	get	as	little	involved	as	possible	in	the	actual	coding	part	and	to	start	with	a	few	practices	
that	would	just	help	us	to	track	progress	and	show	issues.	Then	we	would	introduce	individual	agile	practices	
to	fix	such	issues	during	development.	I	decided	to	start	with	the	following	practices:	

	

ãJeff	Sutherland	1993-2021	 	 204	

	

	

	

A	release	backlog	and	burndown	charts.	These	two	tools	provide	high	visibility	into	the	development	progress	
for	the	project	team,	but	also	outsiders.	Using	simple	wiki	pages	to	store	the	backlogs	allowed	the	engineers	to	
update	their	progress	in	very	little	time.	I	decided	to	measure	the	burndown	rate	by	tasks	complete,	not	feature	
complete.	Measuring	progress	in	feature	complete	has	many	advantages	but	also	forces	a	team	to	change	their	
development	process	a	lot.	It	was	one	of	the	areas	where	I	decided	to	rather	introduce	this	practice	later	in	
order	not	to	overwhelm	the	team.	

In	 past	 projects	 I	 made	 very	 good	 experience	 with	 estimating	 features/tasks	 in	 points.	 Especially	 in	 an	
environment	 like	 AdWords,	 where	 engineers	 are	 often	 interrupted	 by	 meetings	 or	 tech	 talks,	 real	 time	
estimates	are	a	problem.	If	the	burndown	graph	tells	us	that	we	are	implementing	3	days	of	work	per	week	
then	it	often	leads	to	discussions	what	the	team	is	doing	the	other	2	days.	Or	people	try	to	match	their	updates	
to	real	days.	Points	are	a	good	abstraction	layer	that	avoids	any	such	discussion.	

Scope	changes	are	included	in	a	controlled	way	by	first	estimating	them,	adding	them	to	the	backlog.	Here,	the	
burndown	charts	helped	tremendously	to	get	a	quick	assessment	of	the	impact.	

A	weekly	development	checkpoint	meeting	to	plan	the	next	week	and	work	on	scope	changes.	These	checkpoint	
meetings	were	attended	by	the	engineers,	QA,	PM	and	UI.	At	this	point	I	did	not	introduce	real	iterations.	My	
personal	experience	was	that	changing	to	iteration-based	development	is	a	significant	change	for	developers	
and	QA.	It	sounded	too	heavy	to	introduce	at	this	point.	

For	the	adoption	of	these	practices,	I	tried	very	hard	not	to	implement	anything	top-down	but	to	get	buy-in	
from	engineers	and	the	product	managers.	The	initial	changes	sounded	reasonable	to	the	engineers.	Because	I	
was	managing	several	projects,	 I	could	not	be	too	closely	 involved	 in	the	development	activities	 itself.	This	
probably	worked	to	my	advantage	–	the	engineers	realized	quickly	that	I	would	not	try	to	tell	them	how	to	do	
their	job,	but	that	I	only	structure	the	project	in	a	certain	way	which	was	not	too	intrusive.	Also,	one	of	the	goals	
was	to	keep	the	self-organizing	character	of	teams	intact.	After	all,	this	is	a	big	part	of	Google	culture	and	our	
agile	 adoption	 approach	would	 have	 failed	 if	we	 had	 severely	 impacted	 it	 –	 no	matter	 how	 successful	 the	
projects	would	have	been.	

This	approach	also	helped	me	to	work	with	several	projects	at	the	same	time.	Many	meetings	regarding	UI,	
features,	design…	took	place	without	me.	Only	when	we	discussed	scope,	scheduling	or	planned	the	next	steps,	
I	was	there	and	was	usually	leading	the	meeting.	

2.1.	THE	GUINEA	PIG	PROJECTS	
Changes	at	Google	are	often	done	in	some	kind	of	guerilla	approach:	one	project	team	adopts	something	new.	
If	 it	works,	 other	 project	 teams	 get	 interested	 and	will	 try	 it	 as	well.	 Therefore,	we	 started	 only	with	 two	
projects:	

Project	A:	This	was	a	very	new	piece	of	functionality	which	did	not	overlap	with	existing	features.	The	UI	was	
fairly	complex;	the	engineering	team	consisted	of	new	recent	college	graduates	working	in	a	remote	office.	

Project	B:	This	project	was	a	simplified	version	of	AdWords.	It	was	heavily	integrated	into	existing	features	(we	
basically	had	 to	 think	 about	 every	other	 feature	 and	had	 to	 integrate	or	disable	 it).	 The	 team	consisted	of	
experienced	engineers.	Some	of	which	had	already	work	for	some	time	at	Google,	others	were	new	to	Google).	

	

ãJeff	Sutherland	1993-2021	 	 205	

	

	

	

2.2.	THE	FIRST	PROCESS	STEPS	
In	 both	 projects,	 we	 used	 the	 UI	 mockups	 to	 generate	 the	 release	 backlog	 by	 dissecting	 the	 screens	 into	
individual	 features.	 This	 pre-development	 process	 is	 very	 well	 established	 at	 Google	 and	 it	 seemed	 too	
complicated	to	make	this	part	more	agile.		

The	release	backlogs	were	stored	in	wiki	pages	which	made	it	very	easy	for	engineers	to	update	them.	From	
these	wiki	pages	we	automatically	generated	burndown	graphs	to	visualize	the	project	progress.	The	concept	
of	giving	status	updates	in	work	left	and	not	in	work	completed	was	initially	strange	to	both	teams.	But	the	
engineers	quickly	realized	the	advantage.	

As	stated	earlier	 I	did	not	 introduce	 iterations	at	 this	 time.	 Instead	 I	 installed	weekly	checkpoints	with	 the	
development	 team	 (PM,	 UI,	 Engineering	 and	 QA).	 In	 these	 checkpoint	 meetings,	 we	 discussed	 progress,	
additional	 feature	 requests	 and	 other	 issues.	 Additional	 features	were	 estimated	 and	 added	 to	 the	 release	
backlog.	I	extended	the	burndown	graphs	and	used	a	variable	floor	to	indicate	the	scope	changes.	The	graphs	
gave	us	quick	feedback	what	the	estimated	impact	of	these	additional	features	was.	

	

TABLE	1:	BURNDOWN	GRAPH	WITH	VARIABLE	FLOOR	

Although	I	did	not	try	to	implement	an	immediate	testing	of	implemented	features,	I	wanted	to	get	away	from	
the	purely	phased	approach	where	 testing	 starts	 after	development	 is	 finished.	To	push	 for	 this,	we	 setup	
staging	servers	that	were	rebuilt	on	a	nightly	base	with	the	latest	code.	These	staging	servers	were	used	for	
testing	the	application	but	also	for	UI	walkthroughs6.		

Usually,	they	are	performed	towards	the	end	of	a	project	when	the	system	is	nearly	complete.	But	because	we	
staged	the	application	early	on	and	implemented	end-user	features	(from	the	UI	mockups)	we	could	start	with	
these	UI	walkthroughs	much	earlier	and	gather	important	feedback	for	the	further	development.	

	

6	UI	walkthroughs	are	live	demonstrations	of	the	system	with	the	whole	core	team	to	gather	feedback	and	uncover	usability	issues	early	
enough.	

	

ãJeff	Sutherland	1993-2021	 	 206	

	

	

	

2.3.	ISSUES	TO	OVERCOME	
In	both	projects	we	faced	similar	issues:	

	

Customer	/	Product	Owner	concept	

Most	agile	processes	have	this	role	which	is	responsible	for	features,	prioritization	and	ultimately	scope	vs.	
release	date	decisions.	It	is	usually	an	individual	or	team	outside	of	the	development	team.	But	at	Google,	many	
of	these	responsibilities	rest	with	the	team	leads.	The	product	managers	usually	have	more	then	10	projects	at	
the	same	time.	This	does	not	give	them	the	bandwidth	that	the	product	owner	role	requires.	Also,	they	trust	
the	 tech	 leads	and	UI	designers	enough	 that	 they	will	make	good	decisions	 (often,	when	 I	asked	a	product	
manager	for	prioritization	of	a	feature,	he	turned	to	his	tech	lead	and	simply	asked	“what	do	you	want	to	do?”).	

This	gives	the	planning	and	prioritization	meetings	a	different	dynamic.	Often,	the	tech	leads	do	not	see	the	
need	to	make	such	decisions	during	the	planning	meetings	as	they	know	that	they	will	be	 involved	enough	
during	development	itself	that	they	can	make	such	decisions	at	a	later	point.	I	usually	drove	the	team	to	make	
at	least	those	decisions	which	are	necessary	to	create	good	effort	estimates	and	priorities	for	the	backlog.	I	
always	wanted	to	leave	the	weekly	checkpoint	meetings	with	good	updates	to	the	release	backlog.	

Retrospectives	

For	me,	frequent	retrospectives	became	such	an	important	part	of	software	development	that	I	tried	to	install	
them	in	the	weekly	checkpoints	from	the	beginning.	It	would	have	helped	a	lot	with	improving	our	process	
through	constant	feedback.	

But	both	teams	were	not	(yet)	used	to	having	a	formal	development	process.	The	weekly	retrospectives	usually	
turned	into	a	status	report	from	the	last	week	but	very	little	about	the	process	itself.		This	was	aggravated	by	
the	engineering	centric	culture	at	Google.	When	an	issue	comes	up,	most	engineers	at	Google	only	consider	
technology	to	fix	it.		

After	a	few	weeks,	I	silently	dropped	retrospectives	from	the	weekly	checkpoints.	I	decided	to	wait	until	the	
teams	embraced	the	concept	of	a	development	process	and	that	they	own	it	and	could	change	it	to	fix	problems.	

Constant	scope	increase	

In	both	projects,	the	scope	increased	significantly	(more	then	30%)	during	development.	Interestingly,	these	
scope	changes	were	not	 the	result	of	additional	 feature	requests	by	the	product	managers.	Most	additional	
tasks	were	the	results	of	oversights	during	the	release	planning:	

The	engineering	team	missed	features	in	the	UI	mockups	when	we	created	the	release	backlog	

Integrations	into	other	AdWords	features	were	overlooked.	Also,	the	rate	of	change	in	AdWords	is	very	high.	
During	development	others	areas	of	the	application	changed	and	we	had	to	change	our	integration	as	well.	

Most	of	 these	additional	 tasks	could	not	be	down	prioritized	 for	a	 later	release	but	had	 to	be	added	to	 the	
release.	

	

ãJeff	Sutherland	1993-2021	 	 207	

	

	

	

In	both	projects,	this	lead	to	several	postponements	of	the	release	date	as	no	other	feature	could	be	dropped	
from	the	first	release.	

Although,	 there	 was	 considerable	 frustration	 about	 these	 delays,	 both	 project	 teams	 and	 management	
appreciated	 that	we	 at	 least	 knew	 about	 these	 postponements	 early	 enough	 and	not	 just	 the	week	 before	
release.	The	burndown	graphs	gave	a	good	visualization	and	the	release	backlogs	made	it	easy	for	everyone	to	
understand	what	was	left	to	be	implemented.	

The	backlog	was	handy	as	things	came	up	over	time	and	as	we	dived	deeper.	One	function	was	to	not	loose	the	
line	items	but	more	important	it	was	useful	for	the	team	to	see	how	many	unanticipated	issues	cropped	up	and	
have	a	good	snapshot	in	time.	

																																																																																														Product	Manager	

2.4.	WORKING	WITH	THE	REMOTE	TEAM	
As	 stated	 earlier,	 project	 A	was	 implemented	 in	 a	 remote	 location.	 The	 rest	 of	 the	 core	 team	was	 in	 our	
headquarters.	Initially,	I	was	concerned	how	that	team	would	react	to	my	leadership	–	if	they	would	appreciate	
it	as	much	as	the	other	team	or	if	the	would	regard	it	as	a	heavy-handed	approach	from	headquarters.	

To	my	surprise	I	did	not	encounter	many	issues	with	this	project.	Only	providing	tools	to	get	more	visibility	
into	development	progress	and	facilitating	planning	meetings	seemed	to	be	the	right	level	to	give	the	remote	
team	enough	room	to	work	mostly	autonomously.	Also,	I	could	make	myself	very	useful	in	facilitating	lots	of	
communication	with	other	engineers	in	our	headquarters.		The	team	realized	quickly	that	I	indeed	tried	to	help	
the	project	progress	and	not	to	control	them	remotely.	

3.	ADDING	AGILITY	–	ONE	PRACTICE	AT	A	TIME	
3.1. DAILY STANDUP MEETINGS
Both	project	 teams	 initially	rejected	the	 idea	of	daily	standup	meetings.	They	were	seen	as	an	unnecessary	
overhead.	

But	during	development	we	discovered	issues	in	the	weekly	checkpoints	from	the	past	weeks:	

QA	tested	unfinished	features	or	was	not	sure	how	to	test	new	features	

Engineers	who	worked	on	related	features	worked	on	the	same	refactors.	The	AdWords	engineering	team	has	
a	very	healthy	culture	of	constantly	refactoring	the	code.	The	downside	is	that	two	engineers	who	work	on	
related	features	often	start	to	improve	the	same	code.	

Engineers	 could	 not	 continue	 with	 their	 implementation	 because	 they	 depended	 on	 a	 task	 from	 another	
engineer.	Often	enough,	the	other	engineer	was	not	aware	of	this	dependency.	

It	was	clear	to	everybody	that	these	issues	could	have	been	avoided	had	the	team	communicated	earlier.	At	this	
point	 it	became	easy	 to	 convince	both	 teams	 to	 try	out	daily	 standup	meetings	and	 to	 include	QA	 in	 these	
meetings.		

	

ãJeff	Sutherland	1993-2021	 	 208	

	

	

	

The	first	standup	meetings	were	quite	lengthy.	Everybody	had	a	lot	to	talk	about	and	had	problems	to	focus	
just	on	a	quick	status	update	(“done”,	“to-do”,	and	“issues”).	But	after	a	few	days	nobody	had	a	big	baggage	
anymore	and	everybody	realized	that	there	is	not	much	to	talk	if	you	restrict	yourself	to	the	past	12	hours	and	
next	12	hours.	Several	 issues	were	resolved	or	at	 least	uncovered	during	 these	meetings.	After	a	couple	of	
weeks,	 both	 projects	 did	 not	 need	 a	 reminder	 anymore	 but	made	 the	 standup	meeting	 part	 of	 their	 daily	
routine.	

3.2. SMALL STEPS – COMPLETELY FINISHING A FEATURE/TASK
In	project	A,	the	progress	looked	very	good.	Initially,	we	estimated	3	weeks	for	a	set	of	screens.	When	we	did	
low-level	estimates,	we	came	to	40	points.	After	the	first	week,	the	team	did	8	points	–	in	the	second	week	7.5	
points.	I	looked	as	if	the	initial	estimate	was	too	low	and	the	team	would	need	5	instead	of	3	weeks.	

Interestingly,	the	tech	lead	of	the	team	was	convinced	that	the	screens	could	still	be	implemented	in	3	weeks	
(i.e.	all	remaining	24.5	points	in	1	week!)	quote:	“It	just	does	not	feel	that	much	anymore”.	

After	week	3,	the	team	was	not	done.	The	team	implemented	another	9	points.	The	velocity	looked	very	stable:	
~8	points	per	week.	

To	my	big	surprise,	the	tech	lead	announced	in	the	core	team	meeting	once	again	that	his	team	will	be	done	in	
one	week…	

It	took	me	some	time	to	learn	to	trust	the	burndown	graph	and	to	question	my	gut	feeling	when	a	feature	would	
be	finished.	

																																																																																																																									TECH	LEAD	
	

The	fourth	and	fifth	week	showed	a	significant	drop	in	velocity:	4	points	and	2.5	points!	It	turned	out	that	the	
team	did	not	completely	finish	the	tasks:	tests	were	not	written,	code	was	not	reviewed	(which	is	mandatory	
at	Google),	features	were	not	completely	integrated.	This	caused	the	burndown	graph	to	go	down	because	we	
did	not	measure	progress	in	finished	features,	but	in	tasks.	

This	 caused	a	 further	delay	and	 the	screens	were	 finally	 implemented	after	7	weeks.	This	additional	delay	
caused	some	concern	with	the	core	team.	To	avoid	this	situation	I	added	a	green/yellow/red	color	coding	to	
the	burndown	charts	to	indicate	how	many	tasks	are	new/started/finished.	This	made	it	very	clear	if	velocity	
was	 high	 because	many	 features	 are	 partially	 finished	 or	 if	 the	 team	 completely	 finished	 a	 feature	 before	
moving	to	the	next	one.	

	

ãJeff	Sutherland	1993-2021	 	 209	

	

	

	

	

FIGURE	2:	INDICATING	STARTED	AND	FINISHED	TASKS	

The	team	responded	very	positively.	It	was	quite	a	shock	for	the	engineers	to	see	that	up	to	80%	of	all	tasks	
were	in	a	‘started’	state.	They	started	to	keep	the	corridor	of	started	tasks	as	small	as	possible.	

Overall,	this	was	a	very	healthy	learning	experience	for	the	team.	It	showed	them	the	difficulty	that	we	tend	to	
have	when	 trying	 to	estimate	a	 release	date	 instead	of	deriving	 the	 release	date	 from	effort	 estimates	and	
progress.	It	also	showed	them	that	we	can	only	measure	progress	well,	if	we	completely	finish	tasks	and	not	
leave	small	bits	and	pieces	around	which	sometimes	turn	out	to	be	much	larger	then	we	thought.	

3.3. SPIKES
In	the	weekly	checkpoint	meetings	we	often	discovered	that	tasks	took	much	longer	then	initially	estimated.	
Or	the	team	had	problems	with	estimating	a	new	feature.	

Initially,	 the	 engineers	 just	wanted	 to	 pad	 estimates	 for	 such	 unknown	 tasks.	 Often	 enough,	 these	 padded	
estimates	were	much	too	high	or	still	too	low.	And	everybody	could	see	that	they	lowered	the	usability	of	our	
burndown	graphs	significantly.	So,	we	added	in	a	spike	(an	investigative	task)	to	help	determine	what	the	effort	
for	the	implementation	would	be.	Especially	when	the	scope	continued	to	grow,	everybody	realized	the	value	
of	getting	a	better	estimate	of	implementing	a	feature	before	actually	starting	to	work	on	it.	

4.	RELEASE	EXPERIENCE	
The	two	projects	had	somewhat	different	releases:	

Project	A)	

The	 team	 had	 fixed	 many	 bugs	 already	 during	 development,	 only	 few	 bugs	 were	 discovered	 in	 the	 final	
integration	test	phase.	It	was	a	very	smooth	launch.	

Project	B)	

Because	of	the	integration	into	all	other	AdWords	features,	QA	found	many	issues	during	development	–	most	
of	them	through	exploratory	testing	(i.e.	not	really	tied	to	a	particular	product	feature).	The	team	tried	to	keep	

	

ãJeff	Sutherland	1993-2021	 	 210	

	

	

	

the	bug	backlog	under	control	but	did	not	want	to	fix	all	bugs.	When	we	came	close	to	launch,	we	had	to	review	
the	bug	backlog	several	times	and	down	prioritize	many	bugs.	Until	a	few	days	before	launch	it	was	not	clear	if	
we	could	fix	enough	bugs	to	release	it.	

At	least	the	team	did	not	encounter	any	issues	that	required	a	complete	redesign	of	some	area	–	which	could	
have	easily	happened	for	such	a	far	reaching	feature.	

Still,	the	overall	release	experience	was	very	positive.	Both	projects	were	very	successful	in	production	and	had	
very	few	issues.	

5.	FEEDBACK	AND	NEXT	STEPS	
I	held	post-mortem	meetings	with	both	projects.	In	these	meetings	I	focused	the	teams	on	listing	positives	and	
negatives	and	not	jumping	to	discuss	solutions	immediately.	From	the	overall	list,	the	teams	selected	the	worst	
issues	and	best	practices	to	keep:	

Positive	

Project	Management	and	tools	(burndown	charts	and	backlogs)	

Early	QA	and	availability	of	a	staging	server	

Teamwork	and	collaboration	

Negative	

Unclear	or	non	existent	prioritization	

Felt	as	if	team	missed	release	date	several	times	

Too	risky	at	end	because	of	bug	backlog	(Project	B)	

It	was	very	encouraging	that	both	teams	found	the	overhead	of	maintaining	and	updating	the	release	backlogs	
worth	doing.		

Burndown	charts	made	it	easy	to	see	when	were	making	progress,	and	gave		us	a	nice	sense	of	satisfaction	and	
completeness.	

																																																																																																																						ENGINEER	
	

	

And,	furthermore	that	the	process	did	not	impact	the	great	teamwork	and	collaboration	that	Google	teams	have.	
Also,	the	effort	of	maintaining	a	dedicated	staging	server	was	appreciated.	The	engineers	from	both	teams	were	
very	positive	about	the	early	testing	and	feedback	by	QA	that	the	staging	server	afforded.	

	

ãJeff	Sutherland	1993-2021	 	 211	

	

	

	

I	think	it	took	some	time	getting	used	to	the	approach	of	testing	so	early	in	development,	and	also	making	sure	
that	QA	and	dev	were	on	the	same	page.	I	think	that	our	daily	standups	and	also	having	QA	co-located	with	dev	
has	helped	greatly	here.	

																																																																																																														ENGINEER	
	

6.	THE	SECOND	VERSION	
From	the	feedback	of	the	post-mortem	meeting	I	tried	to	modify	the	development	process	further	to	address	
the	worst	issues.		

In	both	teams	I	gave	at	this	point	a	presentation	about	a	full	Scrum	process.	During	the	first	projects	there	were	
many	tech	talks	at	Google	about	agile	development	(by	internal	and	external	speakers).	Both	teams	got	very	
interested	 in	 it.	 They	 could	 see	 that	 their	 practices	 fit	 into	 agile	 development	 but	 heard	 a	 lot	 about	 other	
practices	too.	Also,	the	very	positive	feedback	of	my	project	management	style	and	tools	showed	me	that	the	
engineers	trusted	me	and	my	guidance.	In	both	teams	we	discussed	which	additional	practices	to	adopt:	

Product/Release	Backlog	

To	address	 the	prioritization	 issue,	 I	worked	with	 the	product	managers	of	both	projects	 to	organize	 their	
requirements	in	prioritized	lists.		It	took	a	little	bit	of	time	for	them	to	get	used	to	it,	but	was	not	a	major	effort.	
The	core	team	members	liked	the	backlogs	a	lot.	It	gave	them	much	more	visibility	and	input	into	development.	
Initially,	there	was	still	the	desire	to	make	each	feature	high	priority.	But	soon	everybody	realized	that	even	if	
a	feature	is	not	included	in	the	current	iteration,	it	will	still	get	done	fairly	soon.		

Iteration	based	development	

This	was	the	hardest	practice	to	introduce.	Without	practical	experience	it	is	hard	to	explain	why	iterations	are	
better	than	scheduling	the	whole	release	at	once	and	adding	to	it	when	necessary.	

But	with	 the	 feedback	about	missing	deadlines	and	 too	many	bugs,	 I	 could	explain	how	an	 iteration	based	
approach	would	address	these.	The	concept	of	not	only	implementing	but	also	testing	and	completely	fixing	
features	within	the	same	iteration	sounded	very	appealing	to	the	engineers.	Although,	they	were	somewhat	
skeptical	of	this	high-quality	approach,	both	teams	wanted	to	give	it	a	try.	

The	teams	soon	realized	the	advantages.	The	planning	meetings	became	much	more	focused	than	the	weekly	
checkpoint	meetings	from	the	previous	projects.	No	time	was	wasted	with	discussing	the	same	feature	for	5	
weeks	but	never	implementing	it.	Or	to	discuss	and	design	a	feature	that	finally	gets	dropped.	

We	agreed	to	start	with	2	week	iterations.	This	synchronizes	well	with	the	2	week	release	cycle	of	AdWords.	
We	are	finishing	the	iterations	with	the	code	freeze	for	the	next	push.	This	means	that	a	high-priority	feature	
that	gets	put	on	the	product	backlog	can	be	implemented	and	release	within	4	weeks	without	any	interruption.	

	

	

	

ãJeff	Sutherland	1993-2021	 	 212	

	

	

	

	

	

	

FIGURE	3:	SYNCHRONIZED	DEVELOPMENT	ITERATIONS	AND	RELEASE	CYCLES	

Retrospectives	

After	the	previous	projects,	both	teams	had	some	experience	with	a	defined	development	process	and	that	they	
can	influence/change	it.	I	started	the	iteration	planning	meetings	again	with	a	retrospective	and	this	time	it	
was	much	more	 fruitful.	Most	 contributions	were	 about	 how	we	develop	 our	 application	 and	how	we	 can	
improve	that.	

REVIEW	OF	ITERATION	FEATURES	WITH	CORE	TEAM	
In	 the	 first	 projects,	we	 reviewed	 the	 application	by	 clicking	 through	 it	 during	 the	 core	 team	meeting	 and	
collected	some	feedback.	Now,	with	the	iteration	based	development	we	do	these	reviews	at	the	end	of	each	
iteration	and	only	on	newly	implemented	features.	This	made	the	reviews	more	focused	and	gives	us	feedback	
early	enough	so	that	we	can	integrate	it	in	the	next	iteration.	

TESTING	TASKS	FOR	FEATURES	IN	SAME	ITERATION	
In	order	to	test	features	in	the	same	iteration	as	they	are	developed	in,	we	added	testing	tasks	to	the	iteration	
backlog.	The	QA	engineers	were	asked	to	provide	effort	estimates	for	these	tasks	so	that	they	can	be	included	
in	the	burndown	chart.	

Overall,	the	teams	could	see	how	these	process	changes	would	address	the	negative	feedback	from	the	post-
mortem	meetings.	Both	teams	did	not	fully	understand	how	these	practices	would	work	together	but	agreed	to	
give	it	a	try.	

At	this	point	I	took	on	a	third	project	where	I	implemented	the	new	process	from	the	beginning.	The	product	
manager	of	this	team	was	from	Project	A,	the	QA	engineer	from	Project	B.	This	made	the	adoption	much	easier.	
Also,	many	 people	 in	 AdWords	 had	 heard	 about	 how	 I	 ran	my	 projects	 and	 the	 barrier	 to	 try	 it	 out	 was	
considerably	lower.	

6.1. THE WORLD IS BETTER, BUT …
Overall,	the	more	agile	processes	worked	really	well.	Everybody	noticed	that	the	additional	structure	comes	
with	very	little	overhead	and	fixes	many	of	the	issues	that	we	had	before.	

We're	still	getting	up	to	speed	on	the	iteration-based	development.	It's	been	nice	for	development,	now	that	our	
iterations	are	in	sync	w.	AdWords	code	freeze	cycle.	It	was	hard	at	first	for	UI/PM,	but	has	gotten	easier	as	PM	has	
assembled	farther	projecting	roadmap,	to	give	UI	a	clue	what	will	be	needed	for	a	coming	iteration.	

																																																																																																																	TECH	LEAD	
	

After	a	month	or	two,	both	product	managers	realized	that	they	need	to	establish	a	requirement	process	that	
ensures	that	we	not	only	implement	little	bits	and	pieces	at	a	time	but	keep	the	overall	release.	This	is	an	issue	

Push 2Code
Freeze –
Push 2

Translation
Deadline –
Push 2

Push 1Code
Freeze –
Push 1

Translation
Deadline –
Push 1

week 1 week 2 week 3 week 4 week 5 week 6
Pre-Iteration 1 Iteration 1

Pre-Iteration 2 Iteration 2Development
iterations

Release
cycles

	

ãJeff	Sutherland	1993-2021	 	 213	

	

	

	

that	 I	 had	with	previous	 agile	 teams.	 I	 could	persuade	 the	product	managers	 to	dissect	 their	 releases	 into	
smaller	chunks	and	prioritize	them.		

For	 these	 I	 created	 release	burndown	charts	 to	 track	when	 they	will	 be	 finished.	At	 this	point	 I	 started	 to	
measure	progress	on	the	release	level	in	features	complete.	At	this	point	it	was	very	easy	to	convince	the	teams	
that	this	is	the	right	measurement	as	it	would	give	us	a	much	better	guidance	where	the	release	is.	

The	teams	first	thought	that	it	was	strange	to	have	one	iteration	burndown	chart	and	one	release	burndown	
chart.	 But	 after	 a	 few	 iterations	 they	 saw	 the	 benefit	 of	 both.	 The	 iteration	 burndown	 to	 guide	 actual	
development	efforts.	And	the	release	burndown	to	guide	the	overall	release	planning.	

An	ongoing	issue	is	the	QA	involvement.	I	constantly	have	to	push	the	QA	engineers	to	test	features	immediately	
after	 they	 are	 implemented.	 The	 reason	 is	 that	 the	 QA	 engineers	 support	 several	 projects.	 And	 the	 other	
projects	are	not	agile,	i.e.	don’t	require	much	attention	during	development,	but	a	lot	at	the	end.	This	made	it	
hard	for	the	QA	engineers	to	constantly	spend	a	little	bit	of	time	each	day	on	or	project	to	give	the	engineers	
the	immediate	feedback.	Right	now,	both	teams	question	if	it	is	worth	the	effort	to	include	QA	tasks	and	effort	
estimates	in	our	planning	as	it	does	not	seem	to	have	any	benefit.	

For	me,	 it	 seems	 like	an	extra	 task	of	updating	a	 table	with	data	 (QA	estimates)	 that’s	not	of	 significance	 for	
me.		But	I’d	really	like	to	know	if	it’s	helpful	to	others.		So	far,	most	of	the	estimates	have	been	0.1	points.	

																																																																																																												QA	ENGINEER	
	

Finally,	the	teams	do	not	try	to	create	a	releasable	product	at	the	end	of	the	iteration	(which	is	even	harder	
because	of	the	QA	issue	mentioned	above).	There	are	always	tasks	half	implemented,	not	tested,	need	review…	
For	now,	I	am	not	pushing	too	hard	on	this.	The	teams	completely	implement	enough	features	per	iteration	that	
we	can	release	those	with	the	next	AdWords	update.	

6.2. THE PROJECT MANAGER IS DISPENSABLE
Recently,	I	went	on	a	3	week	vacation.	I	was	concerned	how	the	teams	would	continue	with	the	agile	process	
during	my	absence	and	reminders	and	reinforcements	of	our	agile	practices.	

But	it	turns	out	that	the	teams	embraced	the	process	enough	to	continue	it	even	without	any	reinforcement.	
Iteration	planning	meetings	happened,	backlogs	were	created	according	to	previous	velocity,	and	daily	standup	
meetings	took	place	…	

7.	WHERE	ARE	WE	GOING	FROM	HERE	
With	 the	 success	 of	 three	 project	 teams	we	 are	 now	 prepared	 to	make	much	 bolder	 steps.	 Everybody	 in	
AdWords	had	at	least	heard	about	the	advantages	of	the	agile	approach.	Resistance	at	this	point	will	be	much	
less.	

• Establish	backlogs	and	burndown	charts	as	status	reporting	standards	in	AdWords.	Even	if	teams	do	not	
adopt	other	agile	practices,	these	practices	are	easy	to	implement	and	provide	a	very	good	visibility	for	
the	teams	themselves	but	also	management	and	other	outsiders.	

	

ãJeff	Sutherland	1993-2021	 	 214	

	

	

	

• Other	managers	voiced	interest.	With	a	shadowing	approach	I	will	guide	them	through	the	agile	process	
and	try	to	give	them	enough	experience	to	implement	agile	practices	in	their	projects	by	themselves	

• A	few	projects	involve	teams	from	several	AdWords	departments	(frontend,	backend,	NetAPI…).	Such	
projects	always	required	much	more	management	attention.	As	great	as	Google	engineers	and	tech	leads	
are,	coordinating	and	synchronizing	a	teams	efforts	with	other	teams	often	distracts	tech	leads	too	much.	
We	will	either	try	to	coordinate	these	teams	as	one	big	team	(one	backlog,	one	burndown	chart)	or	use	
the	“Scrum-of-Scrums”	approach.		

• During	the	first	months	at	Google	I	heard	from	other	departments	who	are	using	some	agile	practices	or	
full-on	 Scrum/XP	 processes.	 To	 support	 this	 effort	 we	 started	 a	 grouplet 7 	that	 focuses	 on	 agile	
development.	We	just	recently	started	this	grouplet	and	the	initial	response	/	interest	was	overwhelming	
–	not	only	from	engineering,	but	also	other	groups	(QA,	Product	Management,	UI,	Usability)	

• The	UI	development	and	usability	part	of	our	development	projects	is	still	very	frontloaded.	Almost	all	
of	this	work	is	done	before	development	starts.	A	few	usability	experts	and	UI	designers	showed	interest	
in	making	this	also	part	of	the	iteration-based	development.	

8.	SUMMARY	
With	the	help	of	an	experienced	agile	leader	(Scrum	Master,	XP	coach…)	it	was	possible	to	carefully	introduce	
agile	practices	into	Google	-	an	environment	that	does	not	have	an	affinity	to	processes	in	general.	Instead	of	
introducing	a	grand	new	process,	individual	practices	could	be	introduced	either	to	fix	observed	issues	or	just	
to	“try	them	out”	–	the	development	teams	realized	the	advantages	very	soon.	

Along	 with	 these	 practices	 came	 a	 visibility	 into	 the	 development	 status	 that	 gave	 the	 approach	 great	
management	support.	

All	this	could	be	done	without	destroying	the	great	bottom-up	culture	that	Google	prides	itself	of.	The	practices	
only	 affect	 how	 the	 projects	 are	 structured.	 Design	 and	 implementation	 remains	 fully	 an	 engineering	
responsibility.	With	some	modifications,	we	could	even	keep	the	very	strong	role	of	tech	leads	and	UI	designers.	

In	 keeping	 the	 great	 culture	 and	 self-organization	 of	 the	 teams,	 I	 could	 easily	manage	 several	 projects	 in	
parallel.	I	could	continue	to	rely	on	all	core	team	members	to	communicate	effectively	without	introducing	any	
heavy	processes.	

	

7	Google	grouplets	are	cross-department	groups	which	focus	on	a	specific	area	of	the	software	development	process	(there	
is	 a	 tech	documentation	 grouplet,	 a	 build	 tools	 grouplet…)	The	members	 of	 the	 grouplet	 use	 their	 20%	 time	 for	 their	
participation.	

	

	

ãJeff	Sutherland	1993-2021	 	 215	

	

	

	

5.	REFERENCES	
	

[1] H. Takeuchi and I. Nonaka, "The New New Product Development Game," Harvard
Business Review, 1986.

[2] J. O. Coplien, "Borland Software Craftsmanship: A New Look at Process, Quality and
Productivity," in 5th Annual Borland International Conference, Orlando, FL, 1994.

[3] A. C. Kay, "The early history of Smalltalk," presented at the The second ACM SIGPLAN
conference on History of programming languages (HOPL-II), 1993.

[4] J. Collins, Good to Great: Why Some Companies Make the Leap... and Others Don't:
Collins, 2001.

[5] R. A. Brooks, "Intelligence without representation," Artificial Intelligence, vol. 47, pp.
139-159, 1991.

[6] C. G. Langton, "Life at the Edge of Chaos," in Artificial Life II, SFI Studies in the Sciences
of Complexity, Held Feb 1990 in Sante Fe, NM, 1992, pp. 41-91.

[7] C. Jones, Software assessments, benchmarks, and best practices. Boston, Mass.: Addison
Wesley, 2000.

[8] M. Poppendieck and T. Poppendieck, Lean Software Development: An Implementation
Guide: Addison-Wesley, 2006.

[9] M. Poppendieck, "PatientKeeper, the only company in the world that is not thrashing.,"
Boston, MA, 2007.

[10] J. Johnson, "Decision Latency Theory: It Is All About the Interval," Standish Group2018.
[11] C. Alexander, The Timeless Way of Building, Volume 1, 1979.
[12] H. Takeuchi and I. Nonaka, Hitotsubashi on Knowledge Management. Singapore: John

Wiley & Sons (Asia), 2004.
[13] M. Poppendieck, "A History of Lean: From Manufacturing to Software Development," in

JAOO Conference, Aarhus, Denmark, 2005.
[14] J. K. Liker, The Toyota way : 14 Management Principles from the World's Greatest

Manufacturer. New York: McGraw-Hill, 2004.
[15] W. D. Holford and M. Ebrahimi, "Honda: Approach to Innovation in Aerospace and

Automotive/Pick-Up Truck Development: A Dialectical Yet Coherent Firm," in 40th
Annual Hawaii International Conference on System Sciences (HICSS-40), Big Island,
Hawaii, 2007.

[16] P. M. Senge, The Fifth Discipline: the Art and Practice of the Learning Organization. New
York: Currency, 1990.

[17] K. Schwaber, Agile project management with Scrum. Redmond, Wash.: Microsoft Press,
2004.

[18] K. Schwaber and M. Beedle, Agile software development with scrum: Prentice Hall, 2002.
[19] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project

Management with Outsourced Development Teams," presented at the HICSS'40, Hawaii
International Conference on Software Systems, Big Island, Hawaii, 2007.

[20] J. Sutherland, C. Jakobsen, and K. Johnson, "Scrum and CMMI Level 5: A Magic Potion
for Code Warriors!," in Agile 2007, Washington, D.C., 2007.

	

ãJeff	Sutherland	1993-2021	 	 216	

	

	

	

[21] M. Striebeck, "Ssh! We're Adding a Process..." presented at the Agile 2006, Minneapolis,
2006.

[22] J. Sutherland, "Agile Development: Lessons Learned from the First Scrum," Cutter Agile
Project Management Advisory Service: Executive Update, vol. 5, pp. 1-4, 2004.

[23] K. Schwaber, "Scrum Development Process," in OOPSLA Business Object Design and
Implementation Workshop, J. Sutherland, D. Patel, C. Casanave, J. Miller, and G.
Hollowell, Eds., ed London: Springer, 1997.

[24] K. Beck, Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley,
1999.

[25] K. Beck, "Request for SCRUM Information,"15 May Boston: Compuserve, 1995.
[26] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J. Sutherland, "Scrum: A Pattern

Language for Hyperproductive Software Development," in Pattern Languages of Program
Design. vol. 4, N. Harrison, Ed., ed Boston: Addison-Wesley, 1999, pp. 637-651.

[27] G. Benefield, "Rolling Out Agile at a Large Enterprise," in HICSS'41, Hawaii International
Conference on Software Systems, Big Island, Hawaii, 2008.

[28] K. Schwaber, The Enterprise and Scrum. Redmond, WA: Microsoft Press, 2007.
[29] J. Sutherland, A. Viktorov, and J. Blount, "Adaptive Engineering of Large Software

Projects with Distributed/Outsourced Teams," presented at the International Conference
on Complex Systems, Boston, MA, USA, 2006.

[30] C. Jones, Applied software measurement : assuring productivity and quality, 2nd ed. New
York: McGraw-Hill, 1997.

[31] M. Cohn, Agile Estimation and Planning: Addison-Wesley, 2005.
[32] P. DeGrace and L. H. Stahl, Wicked problems, righteous solutions : a catalogue of modern

software engineering paradigms. Englewood Cliffs, N.J.: Yourdon Press, 1990.
[33] F. P. Brooks, The Mythical Man Month: Essays on Software Engineering: Addison-

Wesley, 1995.
[34] W. A. Wood and W. L. Kleb, "Exploring XP for Scientific Research," IEEE Software, vol.

20, pp. 30-36, May/June 2003.
[35] C. Larman, Agile & Iterative Development: A Manager's Guide. Boston: Addison-Wesley,

2004.
[36] S. J. Gould, The structure of evolutionary theory. Cambridge, Mass.: Belknap Press of

Harvard University Press, 2002.
[37] M. Fowler, "Is Design Dead?," Software Development, vol. 9, April 2001.
[38] J. Sutherland, D. Patel, C. Casanave, J. Miller, and G. Hollowell, Business Object Design

and Implementation: Springer, 1997.
[39] K. Schwaber. (1995, 6 December 2005). Scrum Development Process. Available:

http://jeffsutherland.com/oopsla/schwapub.pdf
[40] J. Sutherland, "Agile Can Scale: Inventing and Reinventing Scrum in Five Companies,"

Cutter IT Journal, vol. 14, pp. 5-11, 2001.
[41] J. Sutherland, "Future of Scrum: Parallel Pipelining of Sprints in Complex Projects,"

presented at the AGILE 2005 Conference, Denver, CO, 2005.
[42] F. P. Brooks, "No silver bullet - essence and accidents of software engineering," Computer,

vol. 20, pp. 10-19, April 1987.

	

ãJeff	Sutherland	1993-2021	 	 217	

	

	

	

[43] G. Booch, Object-Oriented Analysis and Design with Applications: Benjamin Cummings
Publishing Company, 1994.

[44] B. A. Ogunnaike and W. H. Ray, Process Dynamics, Modeling, and Control: Oxford
University Press, 1994.

[45] J. Sutherland. (1996). ScrumWeb Home Page: A Guide to the Scrum Development Process.
Available: http://jeffsutherland.com/scrum/original.html

[46] K. Schwaber, "Controlled Chaos: Living on the Edge," American Programmer, April 1996.
[47] AberdeenGroup, "Upgrading to ISV Methodology for Enterprise Application

Development," Product Viewpoint, vol. 8, December 7 1995.
[48] M. Pittman, "Lessons Learned in Managing Object-Oriented Development," IEEE

Software, vol. 10, pp. 43-53, Jan/Feb 1993.
[49] G. Booch, Object Solutions: Managing the Object-Oriented Project: Addison-Wesley,

1995.
[50] I. Graham, Migrating to Object Technology: Addison-Wesley, 1994.
[51] B. W. Boehm, "A Spiral Model of Software Development and Enhancement," in

International Workshop on Software Process and Software Environments, Coto de Caza,
Trabuco Canyon, California, 1985.

[52] J. Rumbaugh, "What Is a Method?," Object Journal, vol. Oct, 1995.
[53] W. S. Humphrey, Introduction to the Personal Software Process: Addison Wesley, 1996.
[54] H. Ziv and D. Richardson, "The Uncertainty Principle in Software Engineering," in

submitted to Proceedings of the 19th International Conference on Software Engineering
(ICSE'97), 1997.

[55] P. Wegner, "Why Interaction Is More Powerful Than Algorithms," Communications of the
ACM, vol. 40, pp. 80-91, May 1997.

[56] B. Boehm, "Project Termination Doesn't Mean Project Failure," IEEE Computer, vol. 33,
pp. 94-96, 2000.

[57] D. K. I. Sobek, A. C. Ward, and J. K. Liker, "Toyota's Principles of Set-Based Concurrent
Engineering," Sloan Management Review, vol. 40, pp. 67-83, 1999.

[58] W. S. Humphrey, A Discipline for Software Engineering: Addison-Wesley, 1995.
[59] Matisse Software, "The Emergence of the Object-SQL Database," Mountain View,

CA2003.
[60] W. D. Hillis, The Connection Machine. Cambridge, MA: MIT Press, 1985.
[61] S. Levy, Artificial Life : A Report from the Frontier Where Computers Meet Biology, 1st

ed. New York: Vintage, Reprint edition, 1993.
[62] C. Jakobson, "The Magic Potion for Code Warriors! Maintaining CMMI Level 5

Certification With Scrum.," Aarhus, Denmark: Agile 2007 paper in preparation, 2006.
[63] K. E. Nidiffer and D. Dolan, "Evolving Distributed Project Management," IEEE Software,

vol. 22, pp. 63-72, Sep/Oct 2005.
[64] R. Zanoni and J. L. N. Audy, "Projected Management Model for Physically Distributed

Software Development Environment," in HICSS'36, Hawaii, 2003, p. 294.
[65] J. Barthelemy, "The Hidden Costs of Outsourcing," MITSloan Management Review, vol.

42, pp. 60-69, Spring 2001.

	

ãJeff	Sutherland	1993-2021	 	 218	

	

	

	

[66] B. Gorzig and A. Stephan, "Outsourcing and Firm-level Performance," German Institute
of Economic ResearchOctober 2002.

[67] StandishGroup. (2003). 2003 Chaos Chronicles. Available:
http://www.standishgroup.com/press/article.php?id=2

[68] J. Sutherland, "Future of Scrum: Parallel Pipelining of Sprints in Complex Projects with
Details on Scrum Type C Tools and Techniques," PatientKeeper, Inc., Brighton, MAMay
30 2005.

[69] M. Cohn, User Stories Applied : For Agile Software Development: Addison-Wesley, 2004.
[70] C. Jones, "Programming Languages Table, Release 8.2," Software Productivity Research,

Burlington, MA1996.
[71] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis, The Capability Maturity Model

®: Guidelines for Improving the Software Process. Boston: Addison-Wesley, 1995.
[72] M. B. Chrissis, Konrad, and Shrum, CMMI – guideline for process integration and product

improvement, 2002.
[73] D. R. Goldenson and D. L. Gibson, "Demonstrating the impacts and benefits of CMMI,"

CrossTalk, October 2003.
[74] D. D. o. Science, "Maturity of customer and suppliers in the public sector," ed, 2006.
[75] M. Fowler and J. Highsmith, "The Agile Manifesto," Dr. Dobbs, July 13 2001.
[76] M. C. Paulk, "Extreme Programming From a CMM Perspective," IEEE Software, vol. 34,

2001.
[77] M. C. Paulk, "Agile Methodologies and Process Discipline," CrossTalk, 2002.
[78] Surdu, "Army Simulation Program Balances Agile and Traditional Methods with Success,"

CrossTalk, 2006.
[79] P. E. McMahon, "Lessons Learned Using Agile Methods on Large Defense Contracts,"

CrossTalk, 2006.
[80] D. Kane and S. Ornburg, "Agile Development: Weed or Wildflower," CrossTalk, 2002.
[81] Krasner and Houston, "Using the Cost of Quality Approach for Software," CrossTalk,

November 1998.
[82] M. Diaz and J. King, "How CMM Impacts Quality, Productivity, Rework, and the Bottom

Line," CrossTalk, March 2002.
[83] M. K. Kulpa and K. A. Johnson, Interpreting the CMMI: A Process Improvement

Approach. Boca Raton: Auerbach Publications, 2003.
[84] J. Rose, I. Aaen, and P. Axel Nielsen, "The Industrial Age, the Knowledge Age, the Internet

Age: Improving Software Management," Aalborg University2004.
[85] J. O. Coplien, "Personal issues caused over 50% of productivity losses in the ATT Bell

Labs Pasteur Project analysis of over 200 case studies," Lynby, Denmark, 2006.
[86] T. Sulaiman, B. Barton, and T. Blackburn, "AgileEVM - Earned Value Management in

Scrum Projects," in Agile 2006, Minneapolis, 2006.
[87] NetObjectives. (2005, 9 Feb). Managing the Work. Available:

http://netobjectives.com/resources/downloads/ManagingTheWork.pdf
[88] P. M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization,

Revised Edition. New York: Doubleday, 2006.

	

ãJeff	Sutherland	1993-2021	 	 219	

	

	

	

[89] G. Rothfuss. (2003, 6 December). Metrics for Agile Methods. Available:
http://greg.abstrakt.ch/archives/2003/11/metrics_for_agile_methods.html

[90] R. Martens. (2005, 28 November). On Be(coming) Agile: SCRUM Gathering – Advanced
SCRUM and Rally as an Agile Enterprise. Available:
http://theagileblog.net/2005/11/scrum_gathering_advanced_scrum_1.html

[91] T. Poppendieck, "Roots of poor management practices," Boston, MA, 2006.
[92] M. Fackler, "The "Toyota Way" is Translated for a New Generation of Foreign Managers,"

in New York Times, ed. New York, 2007.
[93] D. K. Taft. (2005). Microsoft Lauds 'Scrum' Method for Software Projects. Available:

http://www.eweek.com/article2/0,1895,1885883,00.asp
[94] K. Johnson, C. Jacobsen, and J. Sutherland, "Scrum and CMMI Level 5: A Magic Potion

for Code Warriors!," in SEPG, 2007.
[95] E. M. Goldratt and J. Cox, The goal : a process of ongoing improvement, 2nd rev. ed. Great

Barrington, MA: North River Press, 1994.
[96] M. Cohen. (2006, Sep 4) Make a Bet on General Motors. Forbes. 162.
[97] A. MacCormack, C. Kemerer, M. Cusumano, and B. Crandall, "Exploring Tradeoffs

Between Productivity and Quality in the Selection of Software Development Practices.,"
IEEE Software, pp. 78-85, 2003.

[98] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach:
Addison-Wesley, 1992.

[99] J. Sutherland and W.-J. van den Heuvel, "Enterprise Application Integration and Complex
Adaptive Systems: Could System Integration and Cooperation be improved with
Agentified Enterprise components?," Communications of the ACM, vol. 45, pp. 59-64,
October 2002.

[100] J. Sutherland and J. Coplien, The Scrum Book: The Spirit of the Game: Pragmatic
Bookshelf, 2019.

[101] J. M. Osier, B. Kehoe, and Y. Svendsen, "Keeping Track: Managing Messages with
GNATS, The GNU Problem Report Managment System Version 4.0," Free Software
Foundation2002.

[102] J. M. Bland and D. G. Altman, "Statistics Notes: Regression towards the mean," BMJ, vol.
308, pp. 1499-, June 4, 1994 1994.

[103] W. E. McCarthy, "The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment," The Accounting Review, vol. LVII, pp. 554-578,
July 1982.

[104] G. Weinberg, Quality Software Management Vol. 4: Anticipating Change: Dorset House,
1997.

[105] J. H. Holland, Hidden order : how adaptation builds complexity. Reading, Mass.: Addison-
Wesley, 1995.

[106] J. H. Holland, Emergence : from chaos to order. Reading, Mass.: Addison-Wesley, 1998.
[107] K. Kleinberg and T. Berg, "Mobile Healthcare: Applications, Vendors and Adoption,"

Gartner Group26 November 2002.
[108] S. Group, "There's Less Development Chaos Today," in Software Development Times, ed,

2007.

	

ãJeff	Sutherland	1993-2021	 	 220	

	

	

	

[109] H. Kniberg, Scrum and XP from the Trenches. Stockholm: Crisp, 2007.
[110] I. o. Nonaka and H. Takeuchi, The knowledge-creating company : how Japanese

companies create the dynamics of innovation. New York: Oxford University Press, 1995.
[111] E. M. Goldratt, Theory of Constraints. Burlington, MA: North River Press, 1990.
[112] W. Cunningham. (1999). Wiki Wiki Web. Available: http://c2.com/cgi/wiki
[113] J. Sutherland. (1997). Jeff Sutherland's Scrum Log.
[114] K. Schwaber. (1997). Ken Schwabers's Scrum Web Page.

	

	

ãJeff	Sutherland	1993-2021	 	 221	

	

	

	

APPENDIX	I:	
	

SCRUM:	A	PATTERN	LANGUAGE	FOR	HYPERPRODUCTIVE	SOFTWARE	
DEVELOPMENT	
	

Mike	 Beedle,	 Martine	 Devos,	 Yonat	 Sharon,	 Ken	 Schwaber,	 and	 Jeff	 Sutherland	
	

Can	 a	 repeatable	 and	 defined	 process	 really	 exist	 for	 software	 development?	 Some	 think	 this	 is	 not	 only	
possible	 but	 necessary,	 for	 example,	 those	 who	 favor	 the	 CMM	 (Capability	 Maturity	 Model)	 	 approach	 to	
software	development	[71].	

	

However,	many	of	us	doing	work	in	the	trenches	have	found	over	time	that	the	repeatable	or	defined	process	
approach	makes	many	incorrect	assumptions,	such	as	the	following:	

	

• Repeatable/defined	problem.	A	repeatable/defined	process	assumes	that	there	is	a	step	or	steps	to	
capture	requirements	,	but	in	most	cases,	it	is	not	possible	to	define	the	requirements	of	an	application	
like	that	because	they	are	either	not	well	defined	or	they	keep	changing.	

• Repeatable/defined	solution.	A	repeatable/defined	process	assume	that	an	architecture	can	be	fully	
specified,	but	in	reality	it	is	evolved,	partly	because	of	missing	or	changing	requirements	(as	described	
above),	and	partly	because	of	the	creative	process	involved	in	designing	new	software	structures.	

• Repeatable/defined	 developers.	 The	 capabilities	 of	 a	 software	 developer	 vary	 widely,	 so	 that	 a	
process	that	works	for	one	developer	may	not	work	for	another	one.	

• Repeatable/defined	organizational	Environment.	Schedule	pressure,	priorities	(e.g.	quality	vs.	price	
vs.	manpower),	client	behavior,	and	so	on	are	never	repeatable,	and	because	they	are	highly	subjective,	
they	are	very	hard	to	define.	

	

The	problem	with	these	assumptions	is	that	these	variables	do	have	large	variances.	In	real	life	projects	there	
are	always	large	dynamic	variations	that	can	have	a	great	deal	of	impact	on	the	overall	project.	For	example,	
newly	found	changes	in	the	requirements	during	an	application	implementation—a	typical	occurrence—may	
affect	 drastically	 a	 project’s	 schedule	 that	 assumed	 that	all	 the	 requirements	would	 be	 captured	 up	 front.	
However,	 removing	 this	 uncertainty	 is	 nearly	 impossible	 because	 of	 the	 nearly	 universal	 sources	 of	
requirements	change:	business	requirements	driven	changes,	usability	driven	changes,	re-prioritization	driven	
changes,	 testing	 driven	 changes,	 and	 so	 forth.	 This	 issue	 cannot	 be	 solved	 through	 improved	methods	 for	

	

ãJeff	Sutherland	1993-2021	 	 222	

	

	

	

identifying	the	user	requirements.	Instead	it	calls	for	a	more	complex	process	of	generating	fundamentally	new	
operating	alternatives.	

	

In	other	words,	once	we	accept	that	these	dynamic	variabilities	do	exist,	we	clearly	need	more	adaptive	ways	
to	build	software.	However,	what	we	fear	is	that	most	current	methods	do	not	allow	us	to	build	soft	enough	
software:	 present	 methods	 and	 design	 paradigms	 seem	 to	 inhibit	 adaptability.	 Therefore	 the	 majority	 of	
software	practitioners	nowadays	tend	to	become	experts	at	what	they	can	specify	in	advance,	working	with	the	
unstated	belief	that	there	exists	an	optimal	solution	that	can	be	planned	a	priori.	Once	technology	is	adopted	
by	an	organization,	it	oten	becomes	a	constraining	structure	that	in	part	shapes	the	action	space	of	the	user.	
Thus	we	build	software	too	much	like	we	build	hardware—as	if	it	were	difficult	to	change,	as	if	it	has	to	be	
difficult	 to	 change.	 In	many	organizations,	 “The	 system	requires	 it”	 or	 the	 “System	does	not	 allow	 it”	have	
become	accepted	 (and	often	unavoidable)	 justifications	 for	human	behavior	before	and	after	 the	 system	 is	
released	to	production.	

	

In	contrast,	Scrum	allows	us	to	build	softer	software,	so	there	is	no	need	to	write	full	requirements	up	fronts.	
Since	the	users	do	not	know	what	is	possible,	they	will	ask	for	the	pre-tech-paper	solution	that	they	perceive	
to	be	possible	(“looking	at	the	rearview	mirror”).	But	in	truth,	not	even	the	software	developers	know	fully	
what	can	be	built	beforehand.	Therefore,	the	user	has	no	concept	of	what	is	possible	before	he	or	she	can	feel	
it	or	touch	it.	As	such,	The	Scrum	patterns	presented	here	offer	a	collection	of	empirical	techniques	that	assume	
up	 front	 the	 existence	 of	 uncertainty	 but	 that	 provide	 practical	 and	 specific	 techniques	 to	 tame	 it.	 These	
techniques	 are	 rooted	 in	 complexity	 management,	 that	 is,	 in	 self-organization,	 management	 of	 empirical	
processes,	and	knowledge	creation.	

	

In	 that	 sense,	 Scrum	 is	 not	 only	 a	 “parallel	 iterative	 and	 incremental”	 development	 method,	 it	 is	 also	 an	
“adaptive”	software	development	method.	

	

HOW	DOES	SCRUM	WORK?	
	

Scrum’s	goal	is	to	deliver	as	much	quality	software	as	possible	within	a	series	(three	to	eight)	of	short	time	
boxes	(fixed-time	intervals)	called	Sprints	that	typical	last	about	a	month.	

	

Each	stage	in	the	development	cycle	(Requirements,	Analysis,	Design,	Evolution,	and	Delivery)	is	now	mapped	
to	 a	 Sprint	 or	 series	 of	 Sprints.	 The	 traditional	 software	 development	 stages	 are	 retained	 primarily	 for	
convenience	tracking	milestones.	So,	for	example,	the	Requirements	stage	may	use	one	Sprint,	including	the	

	

ãJeff	Sutherland	1993-2021	 	 223	

	

	

	

delivery	of	a	prototype.	The	Analysis	and	Design	stage	may	take	one	Sprint	each,	while	the	Evolution	stage	may	
take	anywhere	from	three	to	five	Sprints.	

	

Editors	Note:	In	recent	years,	release	cycles	have	shortened	to	three	months	or	less	for	most	software	products.	
Requirements	are	specified	just	enough	and	just	in	time	to	be	ready	at	the	start	of	the	Sprint	cycle.	Sprints	produce	
working	software	for	review	at	the	end	of	every	Sprint.	As	a	result,	Analysis,	Design,	and	Evolution	occur	in	every	
Sprint.	Sprint	cycles	in	many	companies	have	been	shortened	to	two	weeks	or	less.	In	the	best	companies,	delivery	
is	included	in	every	Sprint	[41].	

	

Unlike	a	repeatable	and	defined	process	approach,	in	Scrum	there	is	no	predefined	process	within	a	Sprint.	
Instead,	Scrum	meetings	drive	the	completion	of	the	allocated	activities.	

	

Each	sprint	operates	on	a	number	of	work	items	called	a	Backlog.	As	a	rule,	no	more	items	are	externally	added	
into	the	Backlog	within	a	Sprint.	Internal	items	resulting	form	the	original	pre-allocated	Backlog	can	be	added	
to	 it.	The	goal	of	a	sprint	 is	 to	complete	as	much	quality	software	as	possible,	but	typically	 less	software	 is	
delivered	in	practice.	

	

The	end	result	is	that	there	are	non-perfect	releases	delivered	every	Sprint.	

	

During	a	Sprint,	Scrum	Meetings	are	held	daily	to	determine	the	following:	

	

• Items	completed	since	the	last	Scrum	meeting..	

• Issues	or	blocks	 that	need	to	be	resolved.	 (The	Scrum	Master	 is	a	 team	leader	role	responsible	 for	
resolving	the	blocks.)	

• New	assignments	the	team	should	complete	before	the	next	Scrum	meeting.	

	

Scrum	Meetings	allow	the	development	team	to	“socialize	the	team	members’	knowledge”	as	well	as	produce	a	
deep	cultural	transcendence.	This	“knowledge	socialization”	promotes	a	self-organized	team	structure	within	
which	the	development	process	evolves	on	a	daily	basis.	

	

At	the	end	of	each	Sprint	there	is	a	demonstration	to:	

	

ãJeff	Sutherland	1993-2021	 	 224	

	

	

	

	

• Show	the	customer	what’s	going	on.	

• Give	the	developer	a	sense	of	accomplishment.	

• Integrate	and	test	a	reasonable	portion	of	the	software	being	developed.	

• Ensure	real	progress,	that	is,	the	reduction	of	Backlog,	not	just	the	production	of	more	paper/hours	
spent.	

	

After	gathering	and	reprioritizing	leftover	and	new	tasks,	a	new	Backlog	is	formed	and	a	new	Sprint	starts.	
Potentially,	 many	 other	 organization	 and	 process	 patterns	 may	 be	 used	 in	 combination	 with	 the	 Scrum	
patterns.	

	

	

	

	

Figure:	The	Scrum	pattern	language	

	

THE	PATTERNS	

	

SPRINT	
	

CONTEXT
	

You	 are	 a	 software	 developer	 or	 a	 coach	 managing	 a	 software	 development	 team	 where	 there	 is	 a	 high	
percentage	of	discovery,	creativity,	or	testing	involved.	

	

You	are	building	or	expanding	systems,	which	allow	partitioning	of	work,	with	clean	interfacing,	components,	
or	objects.	

Scrum Master Sprint Backlog Scrum Meetings Demo After Sprint

	

ãJeff	Sutherland	1993-2021	 	 225	

	

	

	

	

PROBLEM
	

You	want	 to	 balance	 the	 needs	 of	 developers	 to	work	 undisturbed	 and	 the	 need	 of	management	 and	 the	
customer	to	see	real	progress,	as	well	as	control	the	direction	of	that	progress	throughout	the	project.	

	

FORCES
	

• Developers	need	time	to	work	undisturbed,	but	they	need	support	for	logistics;	management	and	users	
need	to	be	convinced	that	real	progress	is	being	made.	

• Often,	by	the	time	systems	are	delivered,	they	are	obsolete	or	require	major	changes.	The	problem	is	
that	input	from	the	environment	is	collected	mostly	at	the	start	of	the	project,	while	the	user	learns	
mostly	by	using	the	system	or	intermediate	releases.	

• It	is	often	assumed	that	the	development	process	is	a	well-understood	approach	that	can	be	planned	
and	estimated.	 If	a	project	 fails,	 that	 is	considered	proof	that	the	development	process	needs	more	
rigor.	 These	 step	 by	 step	 approaches,	 however,	 don’t	 work	 because	 they	 do	 not	 cope	 with	 the	
unpredictabilties,	both	human	and	technical,	in	system	development.	Therefore,	at	the	beginning	of	a	
project	 it	 is	 impossible	 to	make	a	complete,	detailed	specification,	plan,	or	schedule	because	of	 the	
many	uncertainties	involved.	

• Overhead	 is	 often	 created	 to	 prove	 that	 a	 process	 is	 on	 track.	 Current	 process	 automation	 adds	
administrative	work	for	managers	and	developers	and	often	results	in	marginally	used	development	
processes	that	become	disk-ware.	(Misfit:	Activity	is	not	synonymous	with	results.	More	often	that	not,	
a	project	plan	shows	activities	but	fails	to	ensure	real	progress	or	results.	

	

SOLUTION
	

Divide	the	project	in	Sprints.	A	Sprint	is	a	period	of	approximately	30	days	in	which	an	agreed	amount	of	work	
will	be	performed	to	create	a	deliverable.	Each	Sprint	takes	a	pre-allocated	amount	of	work	from	the	Backlog,	
and	it	is	assigned	to	Sprints	by	priority	and	by	approximation	of	what	can	be	accomplished	during	the	Sprint’s	
length.	 In	 general,	 chunks	 of	 high	 cohesion	 and	 low	 coupling	 are	 selected—either	 horizontal	 or	 vertical	
“packets,”	that	is,	vertical	or	horizontal	components.	

	

	

ãJeff	Sutherland	1993-2021	 	 226	

	

	

	

As	a	rule,	nothing	is	added	externally	to	the	allocated	Sprint	Backlog	during	the	Sprint.	External	additions	are	
only	added	to	the	global	Backlog,	but	blocks	(unresolved	issues)	resulting	from	the	Sprint	can	be	added	to	the	
allocated	Sprint	Backlog.	A	Sprint	end	with	a	demonstration	(Demo	After	Sprint)	of	new	functionality.	

	

This	gives	the	developers	space	to	be	creative,	to	learn	by	exploring	the	design	space	and	by	doing	actual	work.	
Undisturbed	by	outside	interruptions,	they	are	free	to	adapt	their	ways	of	working	using	opportunities	and	
insights.	At	the	same	time,	this	keeps	management	and	other	project	stakeholders	confident	by	showing	real	
progress	instead	of	documents	and	reports	produced	as	proof	of	progress.	

	

The	net	result	is	that	each	sprint	produces	a	visible	and	usable	deliverable	that	is	shown	to	the	users	at	the	
demo	(Demo	After	Sprint).	An	increment	can	be	either	intermediate	of	shippable,	but	it	should	stand	on	its	own.	
The	goal	of	a	Sprint	is	to	complete	as	much	quality	software	as	possible	and	to	ensure	real	progress,	not	paper	
milestones	as	alibis.	

	

Editors	Note:	This	strategy	had	a	huge	impact	on	global	software	development.	Iterations	that	demonstrate	early	
working	software	in	order	to	incorporate	real-time	user	feedback	have	increased	project	success	industry-wide	
from	16.2%	in	1994	to	35%	in	2006.	This	increased	the	industry-wide	return	on	dollar	invested	in	software	from	
25	cents	in	1998	to	59	cents	in	2006	for	a	compound	annual	growth	rate	of	24%	[108].	

	

RATIONALE
	

• The	fact	that	no	items	are	added	to	the	Backlog	externally	allows	development	to	progress	“full	speed	
ahead,”	without	needing	to	think	about	changes	in	direction.	

• The	fact	that	developers	are	not	“tested”	during	the	Sprint	is	empowering.	

• The	 ability	 to	 choose	 a	 process	 per	 Sprint	 is	 empowering	 and	 enables	 adaptation	 to	 changing	
circumstances	(different	developers,	different	project	phases,	more	knowledge,	etc.)	

• Sprints	are	short;	therefore,	the	problem	of	completing	a	Sprint	is	much	simpler	that	that	of	completing	
a	project.	It	is	easier	to	take	up	this	smaller	challenge.	

• Developers	get	feedback	frequently	(at	the	end	of	each	Sprint).	They	can	therefore	feel	their	successes	
(and	failures)	without	compromising	the	whole	project.	

• Management	has	full	control—it	can	completely	change	direction	at	the	end	of	each	Sprint.	

	

ãJeff	Sutherland	1993-2021	 	 227	

	

	

	

• The	end	users	are	deeply	involved	throughout	the	development	of	the	application	through	the	Demos	
after	the	Sprints,	but	they	are	not	allowed	to	interfere	with	the	day-to-day	activities.	Thus	ownership	
and	direction	still	belong	to	the	users	but	without	their	constant	interference.	

• Project	status	is	visible	since	the	Sprint	produces	working	code.	

	

KNOWN USES
	

At	 Argo,	 the	 Flemish	 department	 of	 education,	we	 have	 been	 using	 Sprints	 since	 January	 1997	 on	 a	 large	
number	of	end-user	projects	and	for	the	development	of	a	framework	for	database,	document	management,	
and	workflow.	The	Backlog	is	divided	in	sprints	that	last	about	a	month.	At	the	end	of	each	Sprint,	a	working	
Smalltalk	 image	 is	 delivered	 with	 integration	 of	 all	 current	 applications.	 The	 team	 meets	 daily	 in	 Scrum	
Meetings,	and	Backlog	is	re-prioritized	after	the	Demo	in	a	monthly	meeting	with	the	steering	committee.	

	

RESULTING CONTEXT
	

The	 result	 is	 a	high	degree	of	 “effective	ownership”	by	 the	participants,	 including	users	who	stay	 involved	
through	 the	 Demos	 and	 the	 prioritizing	 of	 the	 Backlog.	 “Effective	 ownership”	 in	 this	 case	 means	 both	
empowerment	and	the	involvement	of	all	the	participants.	

	

At	the	end	of	a	Sprint,	we	have	the	best	approximation	of	what	was	planned	at	the	start.	In	a	review	session,	
the	supervisors	have	the	opportunity	to	change	the	planning	for	the	future.	The	project	is	totally	flexible	at	this	
point.	Target,	product,	delivery	date,	and	cost	can	be	redefined.	

	

With	Scrum	we	get	a	large	amount	of	post-planning	flexibility	(for	both	customer	and	developer).		

	

It	may	become	clear	in	the	daily	Scrum	Meetings	throughout	the	Sprint	that	some	team	members	are	losing	
time	at	non-	or	less	productive	tasks.	Alternatively,	it	may	also	become	clear	that	people	need	more	time	for	
their	 tasks	 than	 originally	 allocated	 by	 management.	 Developers	 may	 turn	 out	 to	 be	 less	 competent	 or	
experienced	at	the	allocated	task	than	assumed,	or	they	may	be	involved	in	political	or	power	struggles.	The	
high	visibility	of	 scrum,	however,	 allows	us	 to	deal	with	 these	problems.	This	 is	 the	 strength	of	 the	Scrum	
method	manifested	through	the	Scrum	Meetings	and	the	Sprints.	

	

	

ãJeff	Sutherland	1993-2021	 	 228	

	

	

	

Difficulties	in	grouping	Backlog	for	a	Sprint	may	indicate	that	priorities	are	not	clear	to	management	or	to	the	
customer.	

	

BACKLOG	
	

CONTEXT (FROM: SPRINT)
	

You	are	connected	to	a	software	project	or	any	other	project	that	is	chaotic	in	nature	that	needs	information	on	
what	to	do	next.	

	

PROBLEM
	

What	is	the	best	way	to	organize	the	work	to	be	done	next	and	at	any	stage	of	the	project?	

	

FORCES
	

Traditional	 planning	methods	 like	Pert	 and	Gantt	 assume	 that	 you	know	 in	 advance	 all	 the	 tasks,	 all	 their	
dependencies,	 all	 task	 durations,	 and	 all	 available	 resources.	 These	 assumptions	 are	 wrong	 if	 the	 project	
involves	any	learning,	discovery,	creativity,	or	adaptation.	

	

SOLUTION
	

Use	a	Backlog	to	organize	the	work	of	a	Scrum	team.	

	

The	Backlog	is	a	prioritized	list.	The	highest	priority	Backlog	item	will	be	worked	on	first,	the	lowest	priority	
Backlog	item	will	be	worked	on	last.	No	feature,	addition,	or	enhancement	to	a	product	is	worth	fighting	over;	
it	is	simply	either	more	important	or	less	important	at	any	time	to	the	success	and	relevance	of	the	product.	

	

Backlog	is	the	work	to	be	performed	on	a	product.	Completion	of	the	work	will	transform	the	product	from	its	
current	form	into	its	vision.	But	in	Scrum,	the	Backlog	evolves	as	the	product	and	the	environment	in	which	it	

	

ãJeff	Sutherland	1993-2021	 	 229	

	

	

	

will	be	used	evolves.	The	Backlog	is	dynamic,	constantly	changed	by	management	to	ensure	that	the	product	
defined	by	completing	the	Backlog	is	the	most	appropriate,	competitive,	useful	product	possible.	

	

There	are	many	sources	for	the	Backlog	list.	Product	marketing	adds	work	that	will	fulfill	their	vision	of	the	
product.	Sales	adds	work	that	will	generate	new	sales	or	extend	the	usefulness	to	the	installed	base.	Technology	
adds	work	that	will	ensure	the	product	uses	the	most	innovative	and	productive	technology.	Development	adds	
work	to	enhance	product	functions.	Customer	support	adds	work	to	correct	underlying	product	defects.	

	

Only	one	person	prioritizes	work.	This	person	is	responsible	for	meeting	the	product	vision.	The	title	usually	is	
product	manager	or	product	marketing	manager.	If	anyone	wants	the	priority	for	work	changed,	they	have	to	
convince	this	person	to	change	that	priority.	The	highest	priority	Backlog	has	the	most	definition.	 It	 is	also	
prioritized	with	an	eye	toward	dependencies.	

	

Depending	on	how	quickly	products	are	needed	in	the	marketplace	and	the	finances	of	the	organization,	one	or	
more	Scrum	Teams	work	on	a	product’s	Backlog.	As	a	Scrum	Team	is	available	(newly	formed	or	just	finished	
a	Sprint)	to	work	on	the	Backlog,	the	team	meets	with	the	product	manager.	Focusing	on	the	highest	priority	
Backlog,	the	team	selects	a	subset	of	the	Backlog	the	team	believes	it	can	complete	within	a	Sprint	iteration	(30	
days	or	less).	In	doing	so,	the	Scrum	Team	may	alter	the	Backlog	priority	by	selecting	a	Backlog	that	is	mutually	
supportive,	that	is,	one	that	can	be	worked	on	at	once	more	easily	than	by	waiting.	Examples	are	multiple	work	
items	that	require	developing	a	common	module	or	interface	and	that	make	sense	to	include	in	one	Sprint.	

	

The	team	selects	a	cohesive	group	of	top	priority	Backlog	items	that,	once	completed,	will	have	reached	an	
objective,	or	milestone.	This	is	stated	as	the	Sprint’s	objective.	During	the	Sprint,	the	team	is	free	to	not	do	work	
as	long	as	this	objective	is	reached.	

	

The	team	now	decomposes	the	selected	Backlog	into	tasks.	These	tasks	are	discrete	pieces	of	work	that	various	
team	members	sign	up	to	do.	Tasks	are	performed	to	complete	Backlog	to	reach	the	Sprint	objective.	

	

RESULTING CONTEXT
	

Projec	work	is	identified	dynamically	and	prioritized	according	to:	

	

1. The	customer	needs	

	

ãJeff	Sutherland	1993-2021	 	 230	

	

	

	

2. What	the	team	can	do	

	

SCRUM	MEETINGS	
	

CONTEXT (FROM: BACKLOG)
	

You	 are	 a	 software	 developer	 or	 a	 coach	 managing	 a	 software	 development	 team	 where	 there	 is	 a	 high	
percentage	of	discovery,	creativity,	or	testing	involved.	An	example	is	a	first	time	delivery	where	the	problem	
has	to	be	specified,	an	object	model	has	to	be	created,	or	new	or	changing	technologies	are	being	used.	

	

Activities	such	as	scientific	research,	 innovation,	 invention,	architecture,	engineering	and	a	myriad	of	other	
business	situations	may	also	exhibit	this	behavior.	

	

You	may	also	be	a	“knowledge	worker,”	an	engineer,	a	writer,	a	research	scientist,	or	an	artist,	or	a	coach	or	
manager	who	is	overseeing	the	activities	of	a	team	in	these	environments.	

	

PROBLEM
	

What	 is	 the	 best	 way	 to	 control	 an	 empirical	 and	 unpredictable	 process	 such	 as	 software	 development,	
scientific	research,	artistic	projects,	or	innovative	designs	where	it	is	hard	to	define	the	artifacts	to	be	produced	
and	the	processes	to	achieve	them?	

	

FORCES
	

ESTIMATION	
	

• Accurate	 estimation	 for	 activities	 involving	 discovery,	 creativity,	 or	 testing	 is	 difficult	 because	 it	
typically	 involves	 large	 variances,	 and	 because	 small	 differences	 in	 circumstances	 may	 cause	
significant	differences	in	results.	These	uncertainties	come	in	at	least	five	flavors:	

1. Requirements	are	not	well	understood.	

	

ãJeff	Sutherland	1993-2021	 	 231	

	

	

	

2. Architectural	dependencies	are	not	easy	to	understand	and	are	constantly	changing.	

3. There	may	 be	 unforeseen	 challenges	with	 the	 technology.	 Even	 if	 the	 challenges	 are	 know	 in	
advance,	their	solutions	and	related	effort	are	not	known.	

4. There	may	be	bugs	that	are	hard	to	resolve	in	the	software;	therefore,	it	is	typical	to	see	project	
estimates	that	are	several	orders	of	magnitude	off.	You	can’t	“plan	bugs,”	you	can	only	plan	bug	
handling	 and	 provide	 appropriate	 prevention	 schemes	 based	 on	 the	 possibility	 of	 unexpected	
bugs.	

Example:	You	Got	the	Wrong	Number.	In	projects	with	new	or	changing	requirements,	a	new	
architecture,	new	or	changing	technologies,	and	difficult	bugs	to	weed	out,	it	is	typical	to	see	
project	estimates	that	are	off	by	several	orders	of	magnitude.	

5. On	the	other	hand,	estimation	is	 important.	One	must	be	able	to	determine	what	are	the	future	
tasks	within	some	time	horizon	and	prepare	resources	in	advance.	

	

PLANNING	
	

• Planning	and	reprioritizing	tasks	takes	time.	Involving	workers	in	time	planning	meetings	decreases	
productivity.	Moreover,	if	the	system	is	chaotic,	no	amount	of	planning	can	produce	uncertainties.	

Example:	 Paralysis	 by	 Planning.	 Some	 projects	 that	 waste	 everyone’s	 time	 in	 planning	
everything	to	an	extreme	detail	but	are	never	able	to	meet	the	plans.		

• A	plan	that	is	too	detailed	become	large	and	is	hard	to	follow;	the	larger	the	plan	is,	the	more	errors	it	
will	contain	(or	at	the	very	least	the	cost	of	verifying	its	correctness	grows).	

Example:	The	Master	Plan	Is	a	Great	Big	Lie.	Many	projects	that	try	to	follow	a	master	plan	fall	
into	the	trap	of	actually	believing	their	inaccuracies	and	often	face	disappointment	when	their	
expectations	are	not	met.	

• No	planning	at	all	increases	uncertainty	among	team	members	and	eventually	damages	morale.	

Example:	Lost	Vision.	Projects	that	never	schedule	anything	tend	to	 lose	control	over	their	
expectations.	Without	 some	 schedule	 pressure	 no	 one	will	 do	 anything,	 and	worse,	 it	will	
become	difficult	to	integrate	the	different	parts	being	worked	on	independently.	

	

TRACKING	
	

• Too	much	monitoring	wastes	time	and	suffocates	developers.	

	

ãJeff	Sutherland	1993-2021	 	 232	

	

	

	

Example:	Measured	to	Death.	Projects	that	waste	everybody’s	time	in	tracking	everything	to	
an	extreme	detail	but	are	never	able	to	meet	the	plans.	(You	measured	the	tire	pressure	until	
all	the	air	was	out!)	

• Tracking	does	not	increase	the	certainty	of	indicators	because	of	the	chaotic	nature	of	the	system.	In	
fact,	 trying	 to	 control	 normal	 variations	 of	 a	 system	 will	 cause	 wide	 oscillations	 of	 the	 system,	
rendering	it	more	chaotic.	

• Too	much	data	is	meaningless—the	Needle	in	the	Haystack	Syndrome.	

• Not	enough	monitoring	leads	to	blocks	and	possible	idle	time	between	assignments.	

Example:	What	Happened	Here?	Projects	that	never	track	anything	tend	to	lose	control	over	
what	is	being	done.	Eventually	no	one	really	knows	what	has	been	done.	

SOLUTION
To	provide	for	accurate	estimates,	plans,	and	appropriate	tracking,	meet	with	the	team	members	for	a	short	
time	(~15	minutes)	in	a	daily	Scrum	Meeting,	where	the	only	activity	is	asking	each	participant	the	following	
three	questions:	

1. What	have	you	worked	on	since	the	last	Scrum	Meeting?	The	Scrum	Master	logs	the	tasks	that	have	
been	completed	and	those	that	remain	undone.	

2. What	blocks,	if	any,	have	you	found	in	performing	your	tasks	within	the	last	24	hours?	The	Scrum	
Master	logs	all	blocks	and	later	finds	a	way	to	resolve	the	blocks.	

3. What	will	you	be	working	on	in	the	next	24	hours?	The	Scrum	Master	helps	the	team	members	
choose	 the	appropriate	 tasks	 to	work	on	with	 the	help	of	 the	Architect.	Because	 the	 tasks	 are	
scheduled	on	a	24-hour	basis,	the	tasks	are	typically	small	(Small	Assignments).	

This	will	 provide	 you	with	more	 accurate	 estimates,	 short-term	plans,	 appropriate	 tracking,	 an	 correcting	
mechanisms	to	react	to	changes	and	adapt	every	24	hours.	

Scrum	Meetings	typically	take	place	at	the	same	time	and	place	every	day,	so	they	also	serve	to	build	a	strong	
culture.	As	such,	Scrum	meetings	are	rituals	that	enhance	the	socialization	of	status,	issues,	and	plans	for	the	
team.	The	Scrum	Master	leads	the	meetings	and	logs	all	the	tasks	from	every	member	of	the	team	into	a	global	
project	 Backlog.	 He	 also	 logs	 every	 block	 and	 resolves	 each	 block	 while	 the	 developers	 work	 on	 other	
assignments.	

Editors	note:	The	Scrum	Board	has	emerged	as	a	best	practice	for	a	team	to	manage	their	own	tasks.	Teams	meet	
in	 front	of	the	Board	which	has	multiple	columns.	The	first	column	has	User	Stories	 from	the	Product	Backlog	
(features	to	be	delivered)	on	large	cards	prioritized	in	order	of	business	value.	At	the	start	of	the	Sprint,	the	tasks	
to	be	accomplished	for	a	User	Story	are	in	the	left	column	as	small	cards.	Each	day	developers	move	tasks	to	an	“In	
Progress”	column,	then	to	a	“Validation”	column,	then	to	a	“Done”	column.	Estimates	are	updated	on	tasks	daily	
and	the	Burndown	Chart	can	easily	be	calculated	and	posted	to	the	board	[109].	

	

ãJeff	Sutherland	1993-2021	 	 233	

	

	

	

The	blocks	logged	by	the	Scrum	Master	are	now	known	as	the	“Impediment	List”	which	needs	to	be	prioritized.	The	
block	which	is	the	most	critical	constraint	to	system	throughput	should	be	at	the	top	of	the	list	and	the	Scrum	
Master	should	work	on	that	one	first.	Tuning	a	development	project	is	similar	to	tuning	a	computer	system.	It	may	
not	be	obvious	where	the	critical	constraint	lies	and	careful	analysis	may	be	required.	The	main	choke	point	must	
be	found	and	fixed	first.	The	development	system	as	a	whole	should	then	be	allowed	to	stabilize	and	measured.	The	
next	critical	block	after	restabilization	may	be	in	an	unexpected	place.	That	should	be	fixed	next.	Fixing	too	many	
things	at	once	generates	waste	by	fixing	constraints	that	have	minimal	impact	on	throughput.	This	uses	critical	
resources	 to	 change	 things	 that	 do	 not	 dramatically	 improve	 velocity.	 It	 makes	 it	 difficult	 to	 clarify	 system	
dynamics	and	tires	out	and	demotivates	the	team,	management,	and	the	company.	

Scrum	meetings	not	only	schedule	tasks	for	developers,	but	can	and	should	schedule	activities	for	everyone	
involved	 in	 the	 project,	 such	 as	 integration	 personnel	 dedicated	 to	 configuration	management,	 architects,	
Scrum	Masters,	or	a	QA	team.	

Scrum	Meetings	allow	knowledge	workers	to	accomplish	mid-term	goals	typically	allocated	in	Sprints	that	last	
a	month	or	less.	

Scrum	Meetings	can	also	be	held	by	self-directed	teams.	In	that	case,	someone	is	designated	as	the	scribe	and	
logs	 the	completed	activities	of	 the	Backlog	and	 the	existing	blocks.	All	activities	 from	the	Backlog	and	 the	
blocks	and	then	distributed	among	the	team	for	resolution.	

	

The	format	of	 the	Backlog	and	the	blocks	can	also	vary,	ranging	from	a	 list	of	 items	on	a	piece	of	paper,	 to	
software	representations	of	it	over	the	Internet/Intranet	[18].		The	Scrum	Meeting’s	frequency	can	be	adjusted	
and	typically	ranges	between	2	and	48	hours.	

	

These	meetings	are	often	held	standing	up.	This	ensures	that	the	meetings	are	kept	short	and	to	the	point.	

	

	

ãJeff	Sutherland	1993-2021	 	 234	

	

	

	

RATIONALE
It	is	very	easy	to	over-	or	under-estimate,	which	leads	either	to	idle	developer	time	or	to	delays	in	completion	
of	an	assignment.	Therefore,	it	is	better	to	frequently	sample	the	status	of	small	assignments.	Projects	with	a	
high	degree	of	unpredictability	cannot	use	traditional	project	planning	techniques	such	as	Gantt	or	PERT	charts	
only,	 because	 the	 rate	 of	 change	 of	 what	 is	 being	 analyzed,	 accomplished,	 or	 created	 is	 too	 high.	 Instead,	
constant	reprioritization	of	tasks	offers	an	adaptive	mechanism	that	provides	sampling	of	systemic	knowledge	
over	short	periods	of	time.	

Scrum	Meetings	 help	 also	 in	 the	 creation	 of	 an	 “anticipating	 culture”	 [104]	 because	 they	 encourage	 these	
productive	values:	

• They	increase	the	overall	sense	of	urgency.	

• They	promote	the	sharing	of	knowledge.	

• They	encourage	dense	communications.	

• They	facilitate	honesty	among	developers	since	everyone	has	to	give	a	daily	status.	

This	same	mechanism	encourages	team	members	to	socialize,	externalize,	internalize,	and	combine	technical	
knowledge	 on	 an	 ongoing	 basis,	 thus	 allowing	 technical	 expertise	 to	 become	 community	 property	 for	 the	
community	of	practice	[110].	Scrum	Meetings	are	therefore	rituals	with	deep	cultural	transcendence.	Meeting	
at	the	same	place	at	the	same	time,	and	with	the	same	people,	enhances	a	feeling	of	belonging	and	creates	the	
habit	of	sharing	knowledge.	

Seen	from	the	System	Dynamics	point	of	view	[88],	software	development	has	a	scheduling	problem	because	
the	nature	of	programming	assignments	is	rather	probabilistic.	Estimates	are	hard	to	come	by	because:	

• Inexperienced	developers,	managers,	and	architects	are	involved	in	making	the	estimates.	

• There	are	typically	interlocking	architectural	dependencies	that	are	hard	to	manage.	

• There	are	unknown	or	poorly	documented	requirements.	

• There	are	unforeseen	technical	challenges.	

	

As	a	consequence,	the	software	development	becomes	a	chaotic	beer	game,	where	it	is	hard	to	estimate	and	
control	 the	 inventory	 of	 available	 developer’s	 time,	 unless	 increased	 monitoring	 of	 small	 assignments	 is	
implemented	 [88,	 111].	 In	 that	 sense	 the	 Scrum	Meeting	 becomes	 the	 equivalent	 of	 the	 thermometer	 that	
constantly	samples	the	team’s	temperature.	

From	the	Complexity	Theory	perspective	[105,	106],	Scrum	allows	flocking	by	forcing	a	faster	agent	interaction,	
therefore	accelerating	the	process	of	self-organization	because	it	shifts	resources	opportunistically	through	the	
daily	Scrum	Meetings.	

	

ãJeff	Sutherland	1993-2021	 	 235	

	

	

	

This	is	understandable,	because	the	relaxation	of	the	self-organized	multi-agent	system	is	proportional	to	the	
average	exchange	among	agents	per	unit	of	time.	And	in	fact,	the	“interaction	rate”	is	one	of	the	levers	one	can	
push	to	control	“emergent”	behavior—it	is	like	adding	an	enzyme	or	catalyst	to	a	chemical	reaction.	

In	 Scrum	 this	 means	 increasings	 the	 frequency	 of	 the	 Scrum	 Meetings,	 and	 allowing	 more	 hyperlinks	 as	
described	below,	but	up	to	an	optimal	upper-frequency	bound	on	the	Scrum	Meetings	(meetings/time),	and	up	
to	an	optimal	upper	bound	on	the	hyperlinks	or	the	Scrum	Team	members.	Otherwise	the	organization	spends	
too	much	time	socializing	knowledge,	instead	of	performing	tasks.	

KNOWN USES
(Mike	Beedle)	At	Nike	Securities	in	Chicago	we	have	been	using	Scrum	Meetings	since	February	1997	to	run	all	
of	our	projects	including	BPR	and	software	development.	Everyone	involved	in	these	projects	receives	a	week	
of	training	in	Scrum	techniques.	

(Yonat	Sharon)	At	Elementrix	Technologies	we	had	a	project	that	was	running	way	late	after	about	five	months	
of	development.	Only	a	small	part	(about	20	percent)	was	completed,	and	even	this	part	had	too	many	bugs.	
The	project	manager	started	running	bi-daily	short	status	meetings	(none	of	us	was	 familiar	with	the	term	
Scrum	back	then).	In	the	following	month,	the	entire	project	was	completed	and	the	quality	had	risen	sharply.	
Two	weeks	later,	a	beta	version	was	out.	The	meetings	were	discontinued,	and	the	project	hardly	progressed	
since.	I	don’t	think	the	success	of	the	project	can	be	attributed	to	the	Scrum	Meetings	alone,	but	they	did	have	
a	big	part	in	this	achievement.	

One	of	my	software	team	leaders	at	Rafael	implemented	a	variation	of	Scrum	Meetings.	He	would	visit	each	
developer	once	a	day,	and	ask	him	the	three	questions;	he	also	managed	a	Backlog.	This	does	not	have	the	team	
building	effects,	but	it	does	provide	the	frequent	sampling.	

C3	and	Vcaps	projects	(described	on	wiki	[112])	also	do	this.	(BTW,	I	adopted	this	name	in	Hebrew,	since	in	
Hebrew	“meeting”	is	“sitting,”	and	so	we	say	“standup	sitting”.)	

RESULTING CONTEXT
The	application	of	this	pattern	leads	to:	

• Highly	visible	project	status	

• Highly	visible	individual	productivity	

• Less	time	wasted	because	of	blocks	

• Less	time	wasted	because	of	waiting	for	someone	else	

• Increased	team	socialization	

CONCLUSION	
Scrum	is	a	knowledge	creating	process	with	a	high	level	of	 information	sharing	during	the	whole	cycle	and	
work	progress.	

	

ãJeff	Sutherland	1993-2021	 	 236	

	

	

	

The	key	to	Scrum	is	pinning	down	the	date	at	which	we	want	completion	for	production	or	release,	prioritizing	
functionality,	 identifying	 available	 resources,	 and	making	major	decisions	 about	 architecture.	Compared	 to	
more	 traditional	methodologies,	 the	 planning	 phase	 is	 kept	 short	 since	we	 know	 that	 events	will	 require	
changes	to	initial	plans	and	methods.	Scrum	uses	an	empirical	approach	to	development	where	interaction	with	
the	 environment	 is	 not	 only	 allowed	 but	 encouraged.	 Changing	 scope,	 technology,	 and	 functionality	 are	
expected;	and	continuous	information	sharing	and	feedback	keeps	performance	and	trust	high.	

Its	application	also	generates	a	strong	culture	with	well-defined	roles	and	relationships,	with	meaningful	and	
transcending	rituals.	

ACKNOWLEDGEMENTS	
We	would	like	to	thank	all	of	the	Scrum	users	and	reviewers	from	whom	we	have	received	feedback	over	the	
years.	Also,	we	thank	all	of	the	members	of	the	Chicago	Patterns	Group	that	attended	an	early	review	session	
of	 the	 Scrum	Meeting	pattern	 (especially	Brad	Appleton,	 Joe	 Seda,	 and	Bob	Haugen).	 Finally	we	 thank	our	
PloP’98	shepherd,	Linda	rising,	for	providing	us	comments	and	guidance	to	make	our	paper	better.	

(Personal	acknowledgement	from	Mike	Beedle.)	I’d	like	to	thank	both	Jeff	Sutherland	[113]	and	Ken	Schwaber	
[114]	for	adapting	the	Scrum	techniques	to	software	in	the	early	1990s,	and	for	sharing	their	findings	with	me.	
Scrum	has	made	a	significant	contribution	to	the	software	projects	in	which	I	used	the	technique.	

	

	

	

ãJeff	Sutherland	1993-2021	 	 237	

	

	

	

INDEX	

A	

Agile	Manifesto	·	9,	205	

B	

Borland	Quattro	Pro	·	5,	164	
business	plan	·	183	

C	

Capers	Jones	·	6,	109	
Chief	Engineer	·	9	
CMMI	·	8,	9,	82,	97,	172,	204	

E	

Earned	Business	Value	·	155,	158,	159,	160,	161,	162	

F	

Fuji-Xerox	·	46,	56,	93,	168	

G	

Gantt	charts	·	159,	195,	196,	197	

H	

Hitotsubashi	Business	School	·	8	
Honda	·	8,	46,	48,	56,	86,	93,	95,	168	

J	

Jeff	McKenna	·	6,	85,	167	
Jim	Coplien	·	5	
John	Scumniotales	·	6,	50,	167	

K	

Kent	Beck	·	9,	54	

M	

microenterprise	development	·	5	

O	

Object	Studio	·	9	
OOPSLA’95	·	9,	54	

P	

Pasteur	Project	·	5	
PatientKeeper	·	9,	47,	54,	83,	85,	91,	92,	109,	166,	167,	
176,	177,	181,	182,	183,	184,	185,	186,	187,	190,	193,	
194,	195,	196,	197,	200	

Product	Backlog	·	9,	49,	50,	81,	83,	155,	161,	162,	167,	
174,	175,	179	

Product	Owner	·	6,	8,	9,	50,	81,	96,	102,	103,	104,	106,	
162,	167,	168,	170,	171,	175,	177,	178,	179,	180,	181,	
182,	183,	184,	193,	197,	210	

Product Specifications	·	104	

Q	

Quality	Assurance	·	176,	190	

R	

Rodney	Brooks	·	6	

S	

Scrum	and	XP	·	9,	104	

	

ãJeff	Sutherland	1993-2021	 	 238	

	

	

	

Scrum	Master	·	6,	9,	50,	54,	81,	83,	102,	167,	170,	172,	
179,	181,	183,	184,	187,	189,	204	

SirsiDynix	·	8,	81,	93,	96,	97,	98,	99,	100,	101,	102,	103,	
104,	107,	108,	109,	110,	164,	204	

Sprint	Backlog	·	9,	49,	83,	109,	155,	174,	179,	182,	200	
Sprint	Planning	·	107,	169	
StarSoft	·	81,	93,	98,	99,	100,	101,	102,	108,	109,	204	
subsumption	architecture	·	6,	95	

T	

Takeuchi	and	Nonaka	·	5,	8,	48,	56,	95,	168,	170,	175,	
176	

Toyota	·	8,	46,	49,	50,	83,	89,	93,	96,	167,	169,	170,	171,	
172,	173	

W	

Waterfall	·	59,	60,	62,	64,	65,	109,	164	
	

	

	

